cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A173962 Averages of two consecutive odd cubes; a(n) = (n^3 + (n+2)^3)/2.

Original entry on oeis.org

14, 76, 234, 536, 1030, 1764, 2786, 4144, 5886, 8060, 10714, 13896, 17654, 22036, 27090, 32864, 39406, 46764, 54986, 64120, 74214, 85316, 97474, 110736, 125150, 140764, 157626, 175784, 195286, 216180, 238514, 262336, 287694, 314636, 343210, 373464, 405446
Offset: 1

Views

Author

Keywords

Examples

			(1^3 + 3^3)/2 = 14, ...
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=(n^3+(n+2)^3)/2;Table[f[n],{n,1,6!,2}]
    Mean/@Partition[Range[1,81,2]^3,2,1] (* Harvey P. Dale, Apr 20 2015 *)
  • PARI
    Vec(2*x*(7*x^2+10*x+7)/(x-1)^4 + O(x^100)) \\ Colin Barker, Jan 17 2015

Formula

From Colin Barker, Jan 17 2015: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: 2*x*(7*x^2+10*x+7)/(x-1)^4. (End)
From Elmo R. Oliveira, Aug 23 2025: (Start)
a(n) = 2*n*(4*n^2 + 3) = A271636(n)/2.
E.g.f.: 2*exp(x)*x*(7 + 12*x + 4*x^2). (End)

A173965 Averages of four consecutive cubes.

Original entry on oeis.org

2, 9, 25, 56, 108, 187, 299, 450, 646, 893, 1197, 1564, 2000, 2511, 3103, 3782, 4554, 5425, 6401, 7488, 8692, 10019, 11475, 13066, 14798, 16677, 18709, 20900, 23256, 25783, 28487, 31374, 34450, 37721, 41193, 44872, 48764, 52875, 57211, 61778, 66582, 71629, 76925
Offset: 1

Views

Author

Keywords

Examples

			(0^3+1^3+2^3+3^3)/4 = 9, ...
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=(n^3+(n+1)^3+(n+2)^3+(n+3)^3)/4;Table[f[n],{n,-1,5!}]

Formula

From R. J. Mathar, Mar 31 2010: (Start)
a(n) = (2*n-1)*(n^2-n+4)/2 = (2*n-1)*A089071(n+1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(1+x)*(2*x^2-x+2)/(x-1)^4. (End)
E.g.f.: 2 + exp(x)*(-4 + 8*x + 3*x^2 + 2*x^3)/2. - Elmo R. Oliveira, Aug 23 2025

Extensions

More terms from Elmo R. Oliveira, Aug 23 2025
Showing 1-2 of 2 results.