A173976 Numbers m such that the concatenation of m and 999 is the lesser of twin primes, i.e., a millennium twin prime couple.
2, 8, 101, 164, 179, 230, 272, 293, 326, 389, 410, 419, 443, 512, 524, 536, 659, 662, 773, 788, 794, 800, 818, 890, 920, 932, 989, 1028, 1058, 1136, 1187, 1238, 1271, 1292, 1310, 1346, 1466, 1490, 1550, 1577, 1583, 1823, 1838, 1856, 1865, 1913, 2003, 2075
Offset: 1
Examples
2 is a term: 2999 = prime(430), 2999+2 = 3001 = prime(431). 8 is a term: 8999 = prime(1117), 8999+2 = 9001 = prime(1118).
References
- Richard K. Guy: Unsolved Problems in Number Theory, New York, Springer-Verlag, 1994.
- Theo Kempermann: Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005.
- Helmut Kracke, Mathe-musische Knobelisken, Duemmler Bonn, 2. Auflage 1983.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
tp999Q[n_]:=Module[{c=FromDigits[Join[IntegerDigits[n],{9,9,9}]]}, And @@ PrimeQ[c+{0,2}]]; Select[Range[2500],tp999Q] (* Harvey P. Dale, Oct 03 2013 *) Select[3 Range[0,700]+2,AllTrue[1000#+{999,1001},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 05 2021 *)
-
PARI
isok(m) = my(x=eval(Str(m, 999))); isprime(x) && isprime(x+2); \\ Michel Marcus, Mar 08 2023
Comments