cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A173979 a(n) is the smallest number m from A173977 for which A020639(2m-1) = prime(n).

Original entry on oeis.org

5, 13, 25, 127, 85, 196, 181, 472, 421, 946, 685, 1210, 925, 1105, 1882, 3157, 1861, 2446, 2521, 3541, 4306, 4690, 3961, 6160, 5707, 5305, 5725, 6922, 9436, 8065, 8581, 10207, 9661, 13336, 12307, 12796, 14752, 18955, 14965
Offset: 2

Views

Author

Vladimir Shevelev, Mar 04 2010

Keywords

Comments

If the requirement that m be an element of A173977 is dropped, the sequence becomes A006254. - R. J. Mathar, Nov 02 2011

Crossrefs

Programs

  • Maple
    A020639 := proc(n) if n = 1 then 1; else min(op(numtheory[factorset](n)) ) ; end if; end proc:
    isA173977 := proc(n) A020639(2*n-1) < A020639(2*n-3) ; end proc:
    A173979 := proc(n) local p,m ; p := ithprime(n) ; for m from 1 do if A020639(2*m-1) = p and isA173977(m) then return m ; end if; end do: end proc:
    seq(A173979(n),n=2..40) ; # R. J. Mathar, Sep 02 2011
  • Mathematica
    lpf[n_] := lpf[n] = FactorInteger[n][[1, 1]]; q[n_] := lpf[2*n-1] < lpf[2*n-3]; seq[len_] := Module[{s = Table[0, {Prime[len+1]}], k = 2, c = 0, p}, While[c < len, If[q[k], p = lpf[2*k-1]; If[p <= Length[s] && s[[p]] == 0, c++; s[[p]] = k]]; k++]; Select[s, # > 0 &]]; seq[100] (* Amiram Eldar, Oct 25 2024 *)

Extensions

Name corrected by Vladimir Shevelev, Mar 15 2010

A173978 Numbers n such that the least prime factor of 2n - 3 is less than that of 2n - 1, unless 2n - 3 and 2n - 1 are (twin) primes.

Original entry on oeis.org

2, 6, 9, 12, 15, 18, 19, 21, 24, 27, 30, 33, 34, 36, 39, 40, 42, 45, 48, 49, 51, 54, 57, 60, 61, 63, 64, 66, 69, 72, 75, 78, 79, 81, 82, 84, 87, 90, 93, 94, 96, 99, 102, 105, 106, 108, 109, 111, 112, 114, 117, 120, 123, 124
Offset: 1

Views

Author

Vladimir Shevelev, Mar 04 2010

Keywords

Comments

Integers > 1 for which 2n - 3 is not in A001359 and A020639(2n-3) < A020639(2n-1).
Every multiple of 3 greater than 3 is in the sequence.

Examples

			a(3) = 9 because 2*9 - 3 = 15, the least prime factor of which is 3 and that is smaller than the least prime factor of 2*9 - 1 = 17.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200], Not[PrimeQ[2# - 3] && PrimeQ[2# - 1]] && TrueQ[FactorInteger[2# - 3][[1, 1]] < FactorInteger[2# - 1][[1, 1]]] &] (* Alonso del Arte, Jun 05 2011 *)

Extensions

More terms from Alonso del Arte, Jun 05 2011

A173980 a(n) is the smallest term m in A173978 for which A020639(2m-3) = prime(n), n > 1.

Original entry on oeis.org

6, 19, 40, 106, 112, 265, 220, 427, 625, 730, 871, 1252, 1141, 1717, 2095, 2332, 2716, 2380, 3445, 6097, 4465, 4027, 6187, 6646, 6415, 7675, 6796, 7141, 15991, 8701, 9106, 12400, 12025, 11251, 12610, 14995, 14101, 16117, 16696, 16201, 21631, 19006, 22486, 21967
Offset: 2

Views

Author

Vladimir Shevelev, Mar 04 2010

Keywords

Crossrefs

Programs

  • Mathematica
    m = 50; v = Table[0, {m}]; lpf[n_] := FactorInteger[n][[1, 1]]; aQ[n_] := (! PrimeQ[2 n - 3] || ! PrimeQ[2 n - 1]) && lpf[2 n - 3] < lpf[2 n - 1]; c = 0; n = 1; While[c < m - 1, If[aQ[n], s = PrimePi[lpf[2 n - 3]]; If[s > 1 && s <= m && v[[s]] == 0, v[[s]] = n; c++]]; n++]; Rest[v] (* Amiram Eldar, Sep 12 2019 *)

Extensions

More terms from Amiram Eldar, Sep 12 2019

A174453 a(n) is the smallest k >= 1 for which gcd(m + (-1)^m, m + n - 4) > 1, where m = n + k - 1.

Original entry on oeis.org

1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 12, 1, 2, 1, 1, 1, 18, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 30, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 42, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 60, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 72, 1, 2, 1, 1, 1, 9, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 102
Offset: 5

Views

Author

Vladimir Shevelev, Mar 20 2010

Keywords

Comments

If a(n) > sqrt(n), then n-3 is the larger of twin primes. In these cases we have a(10)=5 and, for n > 10, a(n) = n-4. For odd n and for n == 2 (mod 6), a(n)=1; for n == 0 (mod 6), a(n)=2; for {n == 4 (mod 6)} & {n == 8 (mod 10)}, a(n)=4, etc. The problem is to develop this sieve for the excluding n for which a(n) <= sqrt(n) and to obtain nontrivial lower estimates for the counting function of the larger of twin primes.

Crossrefs

Programs

  • Maple
    A174453 := proc(n) local k,m ; for k from 1 do m := n+k-1 ; if igcd(m+(-1)^m,m+n-4) > 1 then return k; end if; end do: end proc: seq(A174453(n),n=5..120); # R. J. Mathar, Nov 04 2010
  • Mathematica
    a[n_] := For[k=1, True, k++, m=n+k-1; If[GCD[m+(-1)^m, m+n-4]>1, Return[k]] ];
    Table[a[n], {n, 5, 106}] (* Jean-François Alcover, Nov 29 2017 *)

Extensions

Terms beyond a(34) from R. J. Mathar, Nov 04 2010
Showing 1-4 of 4 results.