A173983 a(n) = numerator((Zeta(2, 1/3) - Zeta(2, n + 1/3))/9), where Zeta(n, z) is the Hurwitz Zeta function.
0, 1, 17, 849, 21421, 3639749, 58443009, 21150924649, 2564044988129, 64193725627641, 64267546517641, 61818987781213001, 17879592076327397289, 24493235278827913928641, 24506988360923903264741
Offset: 0
Examples
The rationals a(n)/A173984(n) begin 0/1, 1/1, 17/16, 849/784, 21421/19600, 3639749/3312400, 58443009/52998400, 21150924649/19132422400, ... - _Wolfdieter Lang_, Nov 12 2017
Links
- G. C. Greubel, Table of n, a(n) for n = 0..300
Crossrefs
Programs
-
Magma
[0] cat [Numerator((&+[1/(3*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
-
Maple
a := n -> numer((Zeta(0,2,1/3) - Zeta(0,2,n+1/3))/9): seq(a(n), n=0..14); # Peter Luschny, Nov 12 2017
-
Mathematica
Table[FunctionExpand[-Zeta[2, (3*n + 1)/3] + Zeta[2, 1/3]]/9, {n, 0, 20}] // Numerator (* Vaclav Kotesovec, Nov 13 2017 *) Numerator[Table[Sum[1/(3*k + 1)^2, {k, 0, n - 1}], {n, 0, 20}]] (* G. C. Greubel, Aug 23 2018 *)
-
PARI
for(n=0,20, print1(numerator(sum(k=0,n-1, 1/(3*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
Formula
a(n) = numerator of (1/9)(2(Pi^2)/3 + J - Zeta(2,(3n+1)/3)) where J is the constant A173973.
a(n) = numerator of Sum_{k=0..(n-1)} 1/(3*k+1)^2. - G. C. Greubel, Aug 23 2018
Extensions
Name simplified by Peter Luschny, Nov 12 2017
Comments