A173984 a(n) is the denominator of (Zeta(0,2,1/3) - Zeta(0,2,n+1/3)) where Zeta is the Hurwitz Zeta function.
1, 1, 16, 784, 19600, 3312400, 52998400, 19132422400, 2315023110400, 57875577760000, 57875577760000, 55618430227360000, 16073726335707040000, 22004931353582937760000, 22004931353582937760000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..300
Crossrefs
Programs
-
Magma
[1,1] cat [Denominator((&+[9/(3*k+1)^2: k in [1..n-1]])): n in [2..20]]; // G. C. Greubel, Aug 24 2018
-
Maple
a := n -> Zeta(0,2,1/3) - Zeta(0,2,n+1/3): seq(denom(a(n)), n=0..14); # Peter Luschny, Nov 14 2017
-
Mathematica
Table[FunctionExpand[-Zeta[2, (3*n + 1)/3] + Zeta[2, 1/3]], {n, 0, 20}] // Denominator (* Vaclav Kotesovec, Nov 13 2017 *) Denominator[Table[Sum[9/(3*k + 1)^2, {k, 1, n - 1}], {n, 0, 30}]] (* G. C. Greubel, Aug 24 2018 *)
-
PARI
for(n=0,20, print1(denominator(sum(k=1,n-1, 9/(3*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 24 2018
Formula
a(n) = denominator of 2*(Pi^2)/3 + J - Zeta(2,(3*n+1)/3), where Zeta is the Hurwitz Zeta function and the constant J is A173973.
a(n) = denominator of Sum_{k=1..(n-1)} 9/(3*k+1)^2. - G. C. Greubel, Aug 24 2018
Extensions
Name simplified by Peter Luschny, Nov 14 2017