cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173985 a(n) = numerator of (Zeta(0,2,2/3) - Zeta(0,2,n+2/3)), where Zeta is the Hurwitz Zeta function.

Original entry on oeis.org

0, 9, 261, 4401, 546921, 27234729, 7956214281, 8017899597, 4266143013213, 724241322449397, 611292843754229277, 9809672294036025657, 9833902887524676921, 3557459561652307818081, 5990804897343048247416561
Offset: 0

Views

Author

Artur Jasinski, Mar 04 2010

Keywords

Comments

All numbers in this sequence are divisible by 9.

Crossrefs

Programs

  • Magma
    [0] cat [Numerator((&+[9/(3*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
  • Maple
    A173985 := proc(n) add( 1/(2/3+i)^2,i=0..n-1) ; numer(%) ; end proc: seq(A173985(n),n=0..20) ; # R. J. Mathar, Apr 22 2010
  • Mathematica
    Table[FunctionExpand[4*(Pi^2)/3 - Zeta[2, 1/3] - Zeta[2, (3*n + 2)/3]], {n, 0, 20}] // Numerator (* Vaclav Kotesovec, Nov 13 2017 *)
    Numerator[Table[Sum[9/(3*k + 1)^2, {k, 0, n - 1}], {n, 0, 20}]] (* G. C. Greubel, Aug 23 2018 *)
  • PARI
    for(n=0,20, print1(numerator(9*sum(k=0,n-1, 1/(3*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

Formula

a(n) = numerator of 2*(Pi^2)/3 - J - Zeta(2, (3*n+2)/3), where Zeta is the Hurwitz Zeta function and the constant J is A173973.
a(n)/A173987(n) = sum_{i=0..n-1} 1/(i+2/3)^2 = psi'(2/3)-psi'(2/3+n). - R. J. Mathar, Apr 22 2010
a(n) = numerator of Sum_{k=0..(n-1)} 9/(3*k+1)^2. - G. C. Greubel, Aug 23 2018

Extensions

Name simplified by Peter Luschny, Nov 14 2017