A173986 a(n) = numerator((Psi(1, 2/3) - Psi(1, n+2/3))/9), where Psi(1, z) is the Trigamma function.
0, 1, 29, 489, 60769, 3026081, 884023809, 890877733, 474015890357, 80471258049933, 67921427083803253, 1089963588226225073, 1092655876391630769, 395273284628034202009, 665644988593672027490729
Offset: 0
Examples
The rationals a(n)/A173987(n) begin 0/1, 1/4, 29/100, 489/1600, 60769/193600, 3026081/9486400, 884023809/2741569600, 890877733/2741569600, ... - _Wolfdieter Lang_, Nov 12 2017
Links
- G. C. Greubel, Table of n, a(n) for n = 0..300
Crossrefs
Programs
-
Magma
[0] cat [Numerator((&+[2/(3*k+2)^2: k in [0..n-2]])): n in [2..20]]; // G. C. Greubel, Aug 23 2018
-
Maple
r := n -> (Psi(1, 2/3) - Psi(1, n+2/3))/9: seq(numer(simplify(r(n))), n=0..14); # Peter Luschny, Nov 13 2017
-
Mathematica
Table[Numerator[FunctionExpand[(4*Pi^2/3 - Zeta[2, 1/3] - Zeta[2, (3*n + 2)/3])/9]], {n, 0, 20}] (* Vaclav Kotesovec, Nov 14 2017 *) Numerator[Table[Sum[2/(3*k + 2)^2, {k, 0, n - 2}], {n, 1, 20}]] (* G. C. Greubel, Aug 23 2018 *)
-
PARI
for(n=1,20, print1(numerator(sum(k=0,n-2, 2/(3*k+2)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
Formula
a(n) = numerator(r(n)) with r(n) = (1/9)*(4*(Pi^2)/3 - Zeta(2, 1/3) - Zeta(2, (3*n+2)/3)) = (1/9)*(Zeta(2, 2/3) - Zeta(2, (3*n+2)/3)) with the Hurwitz Zeta function Zeta(2, q). This becomes the formula given in the name. - Wolfdieter Lang, Nov 13 2017
a(n) = numerator of (1/9)*(2(Pi^2)/3 - J - Zeta(2, (3n+2)/3)) where J is the constant A173973 [which becomes the preceding formula].
a(n) = numerator of Sum_{k=0..(n-2)} 2/(3*k+2)^2. - G. C. Greubel, Aug 23 2018
Extensions
Name simplified by Peter Luschny, Nov 13 2017
Comments