A174021 Number of symmetry classes of reduced 3x3 magilatin squares with magic sum n.
1, 1, 2, 3, 6, 8, 16, 15, 25, 30, 41, 43, 66, 68, 92, 99, 129, 136, 180, 180, 231, 245, 297, 304, 385, 388, 469, 482, 575, 588, 706, 704, 831, 858, 987, 996, 1171, 1175, 1350, 1370, 1561, 1581, 1806, 1804, 2047, 2081, 2323, 2335, 2641, 2649, 2951, 2979, 3302
Offset: 3
Keywords
References
- Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Annals of Combinatorics, 10 (2006), no. 4, pages 395-413. MR 2007m:05010. Zbl 1116.05071.
Links
- Thomas Zaslavsky, Table of n, a(n) for n=3..10000.
- Matthias Beck and Thomas Zaslavsky, Six Little Squares and How Their Numbers Grow , J. Int. Seq. 13 (2010), 10.6.2.
- Matthias Beck and Thomas Zaslavsky, "Six Little Squares and How their Numbers Grow" Web Site: Maple worksheets and supporting documentation.
- Index entries for linear recurrences with constant coefficients, signature (-2, -3, -3, -2, 0, 3, 6, 9, 10, 9, 5, 0, -6, -11, -14, -14, -11, -6, 0, 5, 9, 10, 9, 6, 3, 0, -2, -3, -3, -2, -1).
Crossrefs
Extensions
"Distinct" values (incorrect) deleted by Thomas Zaslavsky, Apr 24 2010
Comments