A174033 T(n, m) = Sum_{i=0..10} floor(Eulerian(n+1, m)/2^i).
1, 1, 1, 1, 7, 1, 1, 19, 19, 1, 1, 49, 130, 49, 1, 1, 110, 599, 599, 110, 1, 1, 236, 2376, 4826, 2376, 236, 1, 1, 487, 8578, 31220, 31220, 8578, 487, 1, 1, 997, 29200, 176378, 312223, 176378, 29200, 997, 1, 1, 2018, 95630, 909937, 2619425, 2619425, 909937, 95630, 2018, 1
Offset: 0
Examples
Triangle begins: {1}, {1, 1}, {1, 7, 1}, {1, 19, 19, 1}, {1, 49, 130, 49, 1}, {1, 110, 599, 599, 110, 1}, {1, 236, 2376, 4826, 2376, 236, 1}, {1, 487, 8578, 31220, 31220, 8578, 487, 1}, {1, 997, 29200, 176378, 312223, 176378, 29200, 997, 1}, {1, 2018, 95630, 909937, 2619425, 2619425, 909937, 95630, 2018, 1}, ...
Programs
-
Mathematica
<< DiscreteMath`Combinatorica` Sum[Floor[Eulerian[n + 1, m]/2^i], {i, 0, 10}]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
Formula
T(n, m) = Sum_{i=0..10} floor(Eulerian(n+1, m)/2^i), where Eulerian(n, k) = A008292(n, k).