A174061 The Lucky Tickets Problem.
1, 10, 670, 55252, 4816030, 432457640, 39581170420, 3671331273480, 343900019857310, 32458256583753952, 3081918923741896840, 294056694657804068000, 28170312778225750242100
Offset: 0
Examples
The ticket 123051 is lucky because 1 + 2 + 3 = 0 + 5 + 1. 670 is the number of integers in the [0, 100^2-1] range whose digits sum = 18 and 55252 is the number of integers in the [0, 100^3-1] range whose digits sum = 27. - _Miquel Cerda_, Jul 02 2017
References
- S. K. Lando, Lectures on Generating Functions, AMS, 2002, page 1.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- A. Dubey, A Simplified Analysis To A Generalized Restricted Partition Problem, Principia: The Princeton Undergraduate Mathematics Journal, Issue 2, 2016.
Programs
-
Mathematica
Table[Total[ CoefficientList[Series[((1 - x^10)/(1 - x))^n, {x, 0, 9*n}], x]^2], {n, 0, 15}]
-
PARI
a(n)=if(n==0, 1, sum(k=0, n - 1, (-1)^k*binomial(2*n, k)*binomial(11*n - 1 - 10*k, 2*n - 1))); \\ Indranil Ghosh, Jul 01 2017
Formula
a(n) = Sum_{k=0..n-1} (-1)^k * binomial(2n,k) * binomial(11n-1-10k,2n-1).
a(n) = [x^(9n)] ((1 - x^10)/(1 - x))^(2n).
a(n) = A025015(2*n). - Miquel Cerda, Jul 18 2017
Comments