A174062 Least possible sum of exactly n positive integers less than 2n such that none of the n integers divides another.
1, 5, 10, 17, 31, 42, 55, 75, 92, 111, 139, 162, 187, 233, 262, 293, 337, 372, 409, 461, 502, 545, 615, 662, 711, 779, 832, 887, 963, 1022, 1083, 1181, 1246, 1313, 1405, 1476, 1549, 1649, 1726, 1805, 1951, 2034, 2119, 2235, 2324, 2415, 2539, 2634, 2731, 2885
Offset: 1
Keywords
Crossrefs
Row sums of triangle A174063. [David Brown, Mar 20 2010]
Programs
-
Maple
f:= proc(N) local i,j,obj,cons; obj:= add(i*x[i],i=1..2*N-1); cons:= {seq(seq(x[i]+x[j]<=1, j=2*i..2*N-1, i),i=1..N), add(x[i],i=1..2*N-1)=N}; Optimization:-Minimize(obj,cons,assume=binary)[1] end proc: map(f, [$1..60]); # Robert Israel, May 06 2019
-
Mathematica
a[n_] := Module[{obj, cons}, obj = Sum[i*x[i], {i, 1, 2n-1}]; cons = Append[Flatten[Table[Table[x[i]+x[j] <= 1, {j, 2i, 2n-1, i}], {i, 1, n}], 1], AllTrue[Array[x, 2n-1], 0 <= # <= 1&] && Sum[x[i], {i, 1, 2n-1}] == n]; Minimize[{obj, cons}, Array[x, 2n-1], Integers][[1]]]; Reap[For[n = 1, n <= 50, n++, Print[n, " ", a[n]]; Sow[a[n]]]][[2, 1]]; (* Jean-François Alcover, May 17 2023, after Robert Israel *)
Extensions
Extended by Ray Chandler, Mar 19 2010