cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: David Brown

David Brown's wiki page.

David Brown has authored 5 sequences.

A221048 The odd semiprime numbers (A046315) which are orders of a non-Abelian group.

Original entry on oeis.org

21, 39, 55, 57, 93, 111, 129, 155, 183, 201, 203, 205, 219, 237, 253, 291, 301, 305, 309, 327, 355, 381, 417, 453, 471, 489, 497, 505, 543, 579, 597, 633, 655, 669, 687, 689, 723, 737, 755, 791, 813, 831, 849, 889, 905, 921, 939, 955, 979, 993, 1011, 1027, 1047
Offset: 1

Author

David Brown, Apr 14 2013

Keywords

Comments

Numbers of the form pq where p,q are odd primes, p
The corresponding non-Abelian groups are the semidirect products of Z/qZ and Z/pZ. - Bernard Schott, May 16 2020

Crossrefs

Intersection of A046315 and A060652.

Programs

  • Mathematica
    Select[1 + 2*Range[500], (f = FactorInteger[#]; Last /@ f == {1, 1} && Mod @@ Reverse[First /@ f] == 1) &] (* Giovanni Resta, Apr 14 2013 *)
  • PARI
    lista(nn) = {forstep(n=1, nn, 2, my(f=factor(n)); if ((#f~ == 2) && (vecmax(f[,2]) == 1) && ((f[2,1] % f[1,1]) == 1), print1(n, ", ")););} \\ Michel Marcus, Sep 28 2017
    
  • PARI
    list(lim)=my(v=List()); if(lim<9, return([])); forprime(p=3,sqrtint(((lim\=1)-1)\2), forprimestep(q=2*p+1,lim,2*p, listput(v, p*q))); Set(v) \\ Charles R Greathouse IV, Feb 08 2021

Extensions

More terms from Jinyuan Wang, May 16 2020

A192298 The number of sets of n positive integers strictly less than 2*n such that no integer in the set divides another.

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 6, 6, 10, 14, 13, 26, 34, 24, 48, 72, 60, 120, 168, 168, 264, 396, 312, 624, 816, 816, 1632, 2208
Offset: 1

Author

David Brown, Jun 27 2011

Keywords

Comments

Similar to A174094, but the maximum integer in each set must be strictly less than 2n here.

Examples

			a(1) counts {1};
a(2) counts {2,3};
a(3) counts {2,3,5} and {3,4,5};
a(4) counts {2,3,5,7}, {3,4,5,7}, and {4,5,6,7};
a(5) counts {4,5,6,7,9} and {5,6,7,8,9}.
		

Crossrefs

Cf. A174094.

Programs

  • Maple
    with(combstruct) ;
    A192298nodiv := proc(s) sl := sort(convert(s,list)) ; for i from 1 to nops(sl)-1 do for j from i+1 to nops(sl) do if op(j,sl) mod op(i,sl) = 0 then return false; end if; end do: end do:true ; end proc:
    A192298 := proc(n) a := 0 ; it := iterstructs(Subset({seq(i,i=1..2*n-1)},size=n)) :  while not finished(it) do s := nextstruct(it) ; if nops(s) = n then if A192298nodiv(s) then  a := a+1 ; end if; end if; end do: a ; end proc: # R. J. Mathar, Jul 12 2011

A174063 Triangular array (read by rows) containing the least n integers < 2n such that no integer divides another.

Original entry on oeis.org

1, 2, 3, 2, 3, 5, 2, 3, 5, 7, 4, 5, 6, 7, 9, 4, 5, 6, 7, 9, 11, 4, 5, 6, 7, 9, 11, 13, 4, 6, 7, 9, 10, 11, 13, 15, 4, 6, 7, 9, 10, 11, 13, 15, 17, 4, 6, 7, 9, 10, 11, 13, 15, 17, 19, 4, 6, 9, 10, 11, 13, 14, 15, 17, 19, 21, 4, 6, 9, 10, 11, 13, 14, 15, 17, 19, 21, 23, 4, 6, 9, 10, 11, 13, 14
Offset: 1

Author

David Brown, Mar 07 2010

Keywords

Comments

The first number on each row is 2^k, where k is the greatest integer such that (3^k)/2 < n.

Examples

			1;
2, 3;
2, 3, 5;
2, 3, 5, 7;
4, 5, 6, 7, 9;
4, 5, 6, 7, 9, 11;
4, 5, 6, 7, 9, 11, 13;
4, 6, 7, 9, 10, 11, 13, 15;
		

Crossrefs

Programs

  • Mathematica
    noneDivQ[L_] := NoneTrue[Subsets[L, {2}], Divisible[#[[2]], #[[1]]]&];
    k1[n_] := For[k = Log[3, 2n]//Ceiling, True, k--, If[(3^k)/2Jean-François Alcover, Sep 25 2020 *)

Extensions

Definition corrected by David Brown, Mar 20 2010

A174062 Least possible sum of exactly n positive integers less than 2n such that none of the n integers divides another.

Original entry on oeis.org

1, 5, 10, 17, 31, 42, 55, 75, 92, 111, 139, 162, 187, 233, 262, 293, 337, 372, 409, 461, 502, 545, 615, 662, 711, 779, 832, 887, 963, 1022, 1083, 1181, 1246, 1313, 1405, 1476, 1549, 1649, 1726, 1805, 1951, 2034, 2119, 2235, 2324, 2415, 2539, 2634, 2731, 2885
Offset: 1

Author

David Brown, Mar 06 2010

Keywords

Crossrefs

Row sums of triangle A174063. [David Brown, Mar 20 2010]

Programs

  • Maple
    f:= proc(N) local i,j,obj,cons;
    obj:= add(i*x[i],i=1..2*N-1);
    cons:= {seq(seq(x[i]+x[j]<=1, j=2*i..2*N-1, i),i=1..N),
    add(x[i],i=1..2*N-1)=N};
    Optimization:-Minimize(obj,cons,assume=binary)[1]
    end proc:
    map(f, [$1..60]); # Robert Israel, May 06 2019
  • Mathematica
    a[n_] := Module[{obj, cons},
    obj = Sum[i*x[i], {i, 1, 2n-1}];
    cons = Append[Flatten[Table[Table[x[i]+x[j] <= 1, {j, 2i, 2n-1, i}], {i, 1, n}], 1], AllTrue[Array[x, 2n-1], 0 <= # <= 1&] && Sum[x[i], {i, 1, 2n-1}] == n];
    Minimize[{obj, cons}, Array[x, 2n-1], Integers][[1]]];
    Reap[For[n = 1, n <= 50, n++, Print[n, " ", a[n]]; Sow[a[n]]]][[2, 1]]; (* Jean-François Alcover, May 17 2023, after Robert Israel *)

Extensions

Extended by Ray Chandler, Mar 19 2010

A174094 Number of ways to choose n positive integers less than or equal to 2n such that none of the n integers divides another.

Original entry on oeis.org

1, 2, 2, 3, 5, 4, 6, 12, 10, 14, 26, 26, 34, 68, 48, 72, 120, 120, 168, 336, 264, 396, 792, 624, 816, 1632, 1632, 2208, 3616, 3616, 5056, 10112, 6592, 9888, 19776, 19776, 24384, 48768, 48768, 73152, 112320, 76032, 114048, 228096, 190080, 264960, 529920
Offset: 0

Author

David Brown, Mar 07 2010

Keywords

Comments

a(n) >= 2^(1+floor((n-1)/3)). - Robert Israel, Aug 25 2015

Examples

			a(1) = 2 because we can choose {1}, {2}.
a(2) = 2 because we can choose {2, 3}, {3, 4}.
a(3) = 3 because we can choose {2, 3, 5}, {3, 4, 5}, {4, 5, 6}.
		

References

  • F. Caldarola, G. d'Atri, M.Pellegrini, Combinatorics on n-sets: Arithmetic properties and numerical results. In: Sergeyev Y., Kvasov D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science, vol. 11973. Springer, Cham, 389-401.

Crossrefs

The smallest n integers possible is A174063.

Programs

  • Maple
    F:= proc(S,m)
      option remember;
      local s,S1,S2;
      if nops(S) < m then return 0 fi;
      if m = 1 then return nops(S) fi;
      s:= min(S);
      S1:= S minus {s};
      S2:= S minus {seq(j*s,j=1..floor(max(S)/s))};
      F(S1, m) + F(S2, m-1);
    end proc;
    seq(F({$1..2*n},n), n=1..37); # Robert Israel, Aug 25 2015
  • Mathematica
    F[S_List, m_] := F[S, m] = Module[{s, S1, S2}, If[Length[S]Jean-François Alcover, Jul 10 2018, after Robert Israel *)

Extensions

More terms from David Brown, Mar 14 2010
a(30)-a(46) from Ray Chandler, Mar 19 2010
a(0)=1 prepended by Alois P. Heinz, Jun 24 2022