A174093 Triangle T(n, k) = binomial(n-k+1, k) + binomial(k+1, n-k) with T(0,0) = T(1, 0) = T(1, 1) = 1, read by rows.
1, 1, 1, 1, 4, 1, 1, 4, 4, 1, 1, 4, 6, 4, 1, 1, 5, 7, 7, 5, 1, 1, 6, 10, 8, 10, 6, 1, 1, 7, 15, 11, 11, 15, 7, 1, 1, 8, 21, 20, 10, 20, 21, 8, 1, 1, 9, 28, 35, 16, 16, 35, 28, 9, 1, 1, 10, 36, 56, 35, 12, 35, 56, 36, 10, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 4, 1; 1, 4, 4, 1; 1, 4, 6, 4, 1; 1, 5, 7, 7, 5, 1; 1, 6, 10, 8, 10, 6, 1; 1, 7, 15, 11, 11, 15, 7, 1; 1, 8, 21, 20, 10, 20, 21, 8, 1; 1, 9, 28, 35, 16, 16, 35, 28, 9, 1; 1, 10, 36, 56, 35, 12, 35, 56, 36, 10, 1;
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Programs
-
Magma
T:= func< n,k | n lt 2 select 1 else Binomial(n-k+1, k) + Binomial(k+1, n-k) >; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 10 2021
-
Mathematica
T[n_, k_]:= If[n==0 || n==1, 1, Binomial[n-k+1, k] + Binomial[k+1, n-k]]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
-
Sage
def T(n, k): if (n==0 or n==1): return 1 else: return binomial(n-k+1, k) + binomial(k+1, n-k) flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 10 2021
Formula
T(n, k) = binomial(n-k+1, k) + binomial(k+1, n-k) with T(0,0) = T(1, 0) = T(1, 1) = 1.
From G. C. Greubel, Feb 10 2021: (Start)
T(n, k) = T(n, n-k).
Sum_{k=0..n} T(n, k) = 2*Fibonacci(n+2) - [n=0] - 2*[n=1] = 2*A071679(n) + [n=0], where [] is the Iverson bracket. (End)
Extensions
Edited by G. C. Greubel, Feb 10 2021