A174095 Triangle T(n,k,q) = Sum_{j=0..10} q^j * floor(A174093(n,k)/2^j) with q=1, read by rows.
1, 1, 1, 1, 7, 1, 1, 7, 7, 1, 1, 7, 10, 7, 1, 1, 8, 11, 11, 8, 1, 1, 10, 18, 15, 18, 10, 1, 1, 11, 26, 19, 19, 26, 11, 1, 1, 15, 39, 38, 18, 38, 39, 15, 1, 1, 16, 53, 67, 31, 31, 67, 53, 16, 1, 1, 18, 70, 109, 67, 22, 67, 109, 70, 18, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 7, 1; 1, 7, 7, 1; 1, 7, 10, 7, 1; 1, 8, 11, 11, 8, 1; 1, 10, 18, 15, 18, 10, 1; 1, 11, 26, 19, 19, 26, 11, 1; 1, 15, 39, 38, 18, 38, 39, 15, 1; 1, 16, 53, 67, 31, 31, 67, 53, 16, 1; 1, 18, 70, 109, 67, 22, 67, 109, 70, 18, 1;
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Programs
-
Magma
A174093:= func< n,k | n lt 2 select 1 else Binomial(n-k+1, k) + Binomial(k+1, n-k) >; T:= func< n,k,q | (&+[ q^j*Floor(A174093(n,k)/2^j): j in [0..10]]) >; [T(n,k,1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 10 2021
-
Mathematica
A174093[n_, k_]:= If[n<2, 1, Binomial[n-k+1, k] + Binomial[k+1, n-k]]; T[n_, k_, q_]:= Sum[q^j*Floor[A174093[n, k]/2^j], {j, 0, 10}]; Table[T[n, k, 1], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 10 2021 *)
-
Sage
def A174093(n,k): return 1 if n<2 else binomial(n-k+1, k) + binomial(k+1, n-k) def T(n,k,q): return sum( q^j*(A174093(n,k)//2^j) for j in (0..10) ) flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 10 2021
Formula
T(n, k, q) = Sum_{j=0..10} q^j * floor(A174093(n, k)/2^j), for q = 1.
Extensions
Edited by G. C. Greubel, Feb 10 2021
Comments