A174102 Triangle read by rows: T(n, m) = floor(binomial(n+1, m)* binomial(n+2, m)/(2*m+2)), 1 <= m <= n.
1, 3, 3, 5, 10, 5, 7, 25, 25, 7, 10, 52, 87, 52, 10, 14, 98, 245, 245, 98, 14, 18, 168, 588, 882, 588, 168, 18, 22, 270, 1260, 2646, 2646, 1260, 270, 22, 27, 412, 2475, 6930, 9702, 6930, 2475, 412, 27, 33, 605, 4537, 16335, 30492, 30492, 16335, 4537, 605, 33
Offset: 1
Examples
Triangle begins as: 1; 3, 3; 5, 10, 5; 7, 25, 25, 7; 10, 52, 87, 52, 10; 14, 98, 245, 245, 98, 14; 18, 168, 588, 882, 588, 168, 18; 22, 270, 1260, 2646, 2646, 1260, 270, 22; 27, 412, 2475, 6930, 9702, 6930, 2475, 412, 27;
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
Magma
[[Floor(Binomial(n+1, k)*Binomial(n+2, k)/(2*k+2)): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Apr 13 2019
-
Mathematica
T[n_, k_] = Floor[Binomial[n+1, k]*Binomial[n+2, k]/(2*(k+1))]; Table[T[n, k], {n,1,12}, {k,1,n}]//Flatten (* modified by G. C. Greubel, Apr 13 2019 *)
-
PARI
{T(n,k) = (binomial(n+1,k)*binomial(n+2,k)/(2*k+2))\1}; for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 13 2019
-
Sage
[[floor(binomial(n+1,k)*binomial(n+2,k)/(2*k+2)) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Apr 13 2019
Formula
T(n, m) = floor(binomial(n+1, m-1)*binomial(n+2, m-1)/(2*m)).
Extensions
Partially edited by Jon E. Schoenfield, Dec 02 2013
Edited by G. C. Greubel, Apr 13 2019
Comments