cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174109 Triangle read by rows: T(n, k) = c(n, q)/(c(k, q)*c(n-k, q)), where c(n, q) = Product_{j=1..n} (j+q)!/(j-1)! and q = 8.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 55, 55, 1, 1, 220, 1210, 220, 1, 1, 715, 15730, 15730, 715, 1, 1, 2002, 143143, 572572, 143143, 2002, 1, 1, 5005, 1002001, 13026013, 13026013, 1002001, 5005, 1, 1, 11440, 5725720, 208416208, 677352676, 208416208, 5725720, 11440, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 08 2010

Keywords

Comments

Triangle of generalized binomial coefficients (n,k)A342889.%20-%20_N.%20J.%20A.%20Sloane">9; cf. A342889. - _N. J. A. Sloane, Apr 03 2021
Row sums are: {1, 2, 12, 112, 1652, 32892, 862864, 28066040, 1105659414, 51177188350, 2734044648194, ...}.
These sequences (q >= 2) are a generalization of A056939.

Examples

			Triangle begins as:
  1.
  1,     1.
  1,    10,       1.
  1,    55,      55,         1.
  1,   220,    1210,       220,         1.
  1,   715,   15730,     15730,       715,         1.
  1,  2002,  143143,    572572,    143143,      2002,       1.
  1,  5005, 1002001,  13026013,  13026013,   1002001,    5005,     1.
  1, 11440, 5725720, 208416208, 677352676, 208416208, 5725720, 11440, 1.
		

Crossrefs

Cf. A056939 (q=2), A056940 (q=3), A056941 (q=4), A142465 (q=5), A142467 (q=6), A142468 (q=7), this sequence (q=8).
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • Mathematica
    c[n_, q_]:= Product[i+j, {j, 0, q}, {i, 1, n}];
    T[n_, m_, q_] = c[n, q]/(c[m, q]*c[n - m, q]);
    Table[T[n, k, 8], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 13 2019 *)
    T[n_, k_, q_]:= (BarnesG[n+q+2]*BarnesG[k+1]*BarnesG[n-k+1]*BarnesG[q+2] )/(BarnesG[n-k+q+2]*BarnesG[k+q+2]*BarnesG[n+1]);
    Table[T[n, k, 8], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 13 2019 *)
  • PARI
    {c(m,q) = prod(j=1,m, (j+q)!/(j-1)!)};
    for(n=0,10, for(k=0,n, print1(c(n, 8)/(c(k, 8)*c(n-k, 8)), ", "))) \\ G. C. Greubel, Apr 13 2019

Formula

T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)) where c(n, q) = Product_{j=1..n} (j+q)!/(j-1)! and q=8.
T(n, k, q) = (G(q+2)*G(k+1)*G(n+q+2)*G(n-k+1))/(G(n+1)*G(k+q+2)*G(n-k+q+ 2)), where G(x) is the Barnes G-function (see A000178). - G. C. Greubel, Apr 13 2019

Extensions

Edited by G. C. Greubel, Apr 13 2019