A174109 Triangle read by rows: T(n, k) = c(n, q)/(c(k, q)*c(n-k, q)), where c(n, q) = Product_{j=1..n} (j+q)!/(j-1)! and q = 8.
1, 1, 1, 1, 10, 1, 1, 55, 55, 1, 1, 220, 1210, 220, 1, 1, 715, 15730, 15730, 715, 1, 1, 2002, 143143, 572572, 143143, 2002, 1, 1, 5005, 1002001, 13026013, 13026013, 1002001, 5005, 1, 1, 11440, 5725720, 208416208, 677352676, 208416208, 5725720, 11440, 1
Offset: 0
Examples
Triangle begins as: 1. 1, 1. 1, 10, 1. 1, 55, 55, 1. 1, 220, 1210, 220, 1. 1, 715, 15730, 15730, 715, 1. 1, 2002, 143143, 572572, 143143, 2002, 1. 1, 5005, 1002001, 13026013, 13026013, 1002001, 5005, 1. 1, 11440, 5725720, 208416208, 677352676, 208416208, 5725720, 11440, 1.
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
Crossrefs
Programs
-
Mathematica
c[n_, q_]:= Product[i+j, {j, 0, q}, {i, 1, n}]; T[n_, m_, q_] = c[n, q]/(c[m, q]*c[n - m, q]); Table[T[n, k, 8], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 13 2019 *) T[n_, k_, q_]:= (BarnesG[n+q+2]*BarnesG[k+1]*BarnesG[n-k+1]*BarnesG[q+2] )/(BarnesG[n-k+q+2]*BarnesG[k+q+2]*BarnesG[n+1]); Table[T[n, k, 8], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 13 2019 *)
-
PARI
{c(m,q) = prod(j=1,m, (j+q)!/(j-1)!)}; for(n=0,10, for(k=0,n, print1(c(n, 8)/(c(k, 8)*c(n-k, 8)), ", "))) \\ G. C. Greubel, Apr 13 2019
Formula
T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)) where c(n, q) = Product_{j=1..n} (j+q)!/(j-1)! and q=8.
T(n, k, q) = (G(q+2)*G(k+1)*G(n+q+2)*G(n-k+1))/(G(n+1)*G(k+q+2)*G(n-k+q+ 2)), where G(x) is the Barnes G-function (see A000178). - G. C. Greubel, Apr 13 2019
Extensions
Edited by G. C. Greubel, Apr 13 2019
Comments