A174115 Primitive solutions x of the Diophantine equation x^2 + y^3 = z^7, gcd(x,y,z) = 1.
-21063928, -15312283, -2213459, -71, -3, -1, 0, 1, 3, 71, 2213459, 15312283, 21063928
Offset: 1
Examples
71^2 - 17^3 = 5041 - 4913 = 128 = 2^7; 2213459^2 + 1414^3 = 4899400744681 + 2827145944 = 4902227890625 = 65^7.
References
- L. J. Mordell, Diophantine Equations, Academic Press, NY, 1969, p. 205.
Links
- H. Darmon, A. Granville, On the equations z^m = F(x,y) and Ax^p + By^q = Cz^r , Bull. London Math. Soc. 27 (1995), 513-543.
- B. Poonen, E. Schaefer, M.Stoll, Twists of X (7) and primitive solutions to x^2+ y^3= z^7, Duke Math. J. 137 (2007), no. 1, 103-158.
Programs
-
Mathematica
(* This script is a recomputation of the x>0 solutions, assuming z max is 113 *) r[y_, z_]:= Reduce[x>0 && x^2+y^3==z^7, x, Integers]; Reap[Do[If[(rr=r[y, z]) =!= False, xx = rr[[2]]; If[GCD[xx, y, z] == 1, Print[{xx, y, z}]; Sow[{xx, y, z}]] ]; yy = -y; If[(rr=r[yy, z]) =!= False, xx = rr[[2]]; If[GCD[xx, yy, z]==1, Print[{xx, yy, z}]; Sow[{xx, yy, z}]]], {z, 0, 113}, {y, 0, 10^5}]][[2, 1]] (* Jean-François Alcover, Apr 10 2015 *)
Comments