cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A274035 Numbers k such that k^7 = a^2 + b^3 for positive integers a and b.

Original entry on oeis.org

2, 5, 8, 9, 10, 12, 15, 17, 24, 26, 28, 31, 33, 36, 37, 40, 43, 44, 46, 50, 52, 54, 56, 57, 63, 65, 68, 69, 72, 73, 76, 80, 82, 89, 91, 98, 100, 101, 108, 113, 122, 126, 127, 128, 129, 134, 136, 141, 145, 148, 150, 152, 161, 164, 168, 170, 171, 174, 177, 183, 185, 189, 192, 196, 197
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    okQ[n_] := Module[{a, b}, For[b = 1, b < n^(7/3), b++, If[IntegerQ[a = Sqrt[n^7 - b^3]] && a > 0, Print["n = ", n, ", a = ", a, ", b = ", b]; Return[True]]]; False];
    Reap[For[n = 1, n < 200, n++, If[okQ[n], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jan 30 2019 *)
  • PARI
    isA055394(n)=for(k=1,sqrtnint(n-1,3),if(issquare(n-k^3),return(1)));0
    is(n)=isA055394(n^7)
    
  • Sage
    # Sage cannot handle n = 123, 174, ... without the fallback, even with descent_second_limit = 1000.
    def fallback(n):
        return gp("my(n=" + str(n) + ");for(k=1,sqrtnint(n-1,3),if(issquare(n-k^3),return(1)));0")
    def isA055394(z):
        z7 = z^7
        E = EllipticCurve([0,z7], descent_second_limit = 1000)
        try:
            for c in E.integral_points():
                if c[0] < 0 and c[1] != 0:
                    return True
            return False
        except RuntimeError:
            return fallback(z7)
    [x for x in range(1, 201) if isA055394(x)]

Extensions

Missing term 174 inserted by Jean-François Alcover, Jan 30 2019

A293691 Numbers z such that x^2 + y^6 = z^2 (with positive integers x and y) and gcd(x, y, z) = 1.

Original entry on oeis.org

17, 365, 745, 1025, 1753, 7813, 8177, 11665, 15641, 16649, 27289, 58825, 59189, 65537, 66265, 66637, 81161, 117665, 118673, 129313, 183185, 250001, 250729, 265721, 273533, 324545, 367649, 531457, 532465, 596977, 746497, 762121, 781441, 864145, 885781, 886145
Offset: 1

Views

Author

XU Pingya, Oct 14 2017

Keywords

Comments

Subsequence of A293690.

Examples

			15^2 + 2^6 = 17^2 and gcd(15, 2, 17) = 1, 17 is a term.
885416^2 + 33^6 = 886145^2 and gcd(885416, 33, 886145) = 1, 886145 is a term.
		

Crossrefs

Programs

  • Mathematica
    z={};Do[If[IntegerQ[(n^2 - y^6)^(1/2)] && GCD[y,n]==1,AppendTo[z,n]],{n,8.9*10^5},{y,(n^2 - 1)^(1/6)}];z

A293693 Numbers z such that x^2 + y^7 = z^2 (with positive integers x and y) and gcd(x, y, z) = 1.

Original entry on oeis.org

33, 1094, 2219, 4097, 6283, 39063, 40156, 69985, 78157, 82221, 148109, 411772, 412865, 450834, 524289, 526475, 602413, 823575, 827639, 893527, 1347831, 2391485, 2430547, 2500001, 2502187, 2803256, 3323543, 4783001, 4787065, 5307257, 7282969, 8957953, 9036077
Offset: 1

Views

Author

XU Pingya, Oct 14 2017

Keywords

Comments

Subsequence of A293692.

Examples

			31^2 + 2^7 = 33^2 and gcd(31, 2, 33) = 1, 33 is a term.
8879827^2 + 60^7 = 9036077^2 and gcd(8879827, 60, 9036077) = 1, 9036077 is a term.
		

Crossrefs

Programs

  • Mathematica
    z={};Do[If[IntegerQ[(n^2 - y^7)^(1/2)] && GCD[y,n]==1,AppendTo[z,n]],{n,9.7*10^6},{y,(n^2 - 1)^(1/7)}];z
Showing 1-3 of 3 results.