cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A293283 Numbers n such that n^2 = a^2 + b^5 for positive integers a b and n.

Original entry on oeis.org

6, 9, 18, 40, 42, 68, 75, 90, 99, 105, 122, 126, 130, 174, 192, 196, 225, 251, 257, 288, 315, 325, 330, 350, 405, 490, 499, 504, 516, 528, 546, 550, 576, 614, 651, 665, 684, 726, 735, 744, 849, 882, 900, 920, 936, 974, 1025, 1032, 1036, 1107, 1140, 1183, 1200
Offset: 1

Views

Author

XU Pingya, Oct 04 2017

Keywords

Comments

For n > 0, k = (n + 1)(2n + 1)^2 is a term in this sequence, because k^2 = (n * (2n + 1)^2)^2 + (2n + 1)^5. Examples: 18, 75, 196, 405, 726, 1183.
When z^2 = x^2 + y^2 (i.e., z = A009003(n)), (z * y^4)^2 = (x * y^4)^2 + (y^2)^5. Thus z * y^4 is a term in this sequence. For example, 1200. More generally, for positive integer i, j and k, x^(5i - 5) * y^(5j - 1) * z^(5k - 5) is in this sequence.
When z^2 = x^2 + y^3 (i.e., z = A070745(n)), (z * y)^2 = (x * y)^2 + y^5. Thus z * y is in this sequence. E.g. 6, 18, 40, ... . More generally, for positive integer i, j and k, x^(5i - 5) * y^(5j - 4) * z^(5k - 4) is in this sequence.
When z^2 = x^2 + y^4 (i.e., z = A271576(n)), (z * y^3)^2 = (x * y^3)^2 + (y^2)^5. Thus z * y^3 is also in this sequence. E.g. 40, 405, 1107, ... . More generally, for positive integer i, j and k, x^(5i - 5) * y^(5j - 2) * z^(5k - 4) is in this sequence.

Examples

			6^2 = 2^2 + 2^5.
9^2 = 7^2 + 2^5.
		

Crossrefs

Programs

  • Mathematica
    c[n_]: = Count[n^2 - Range[(n^2 - 1)^(1/5)]^5, _?(IntegerQ[Sqrt[#]] &)] > 0;
    Select[Range[1200], c]
  • PARI
    isok(n) = for (k=1, n-1, if (ispower(n^2-k^2, 5), return (1));); return (0); \\ Michel Marcus, Oct 06 2017

A293690 Numbers z such that x^2 + y^6 = z^2 for positive integers x and y.

Original entry on oeis.org

10, 17, 45, 80, 123, 136, 225, 234, 260, 270, 291, 325, 360, 365, 459, 510, 514, 640, 666, 745, 984, 1025, 1088, 1215, 1225, 1250, 1305, 1450, 1466, 1565, 1740, 1753, 1800, 1872, 1950, 1970, 2022, 2080, 2125, 2160, 2328, 2600, 2628, 2880, 2920, 3172, 3185
Offset: 1

Views

Author

XU Pingya, Oct 14 2017

Keywords

Comments

Let i, j and k be nonnegative integers, m > n be positive integers. As ((m^2 - n^2)^(3*i+1) * (2*m*n)^(3*j+2) * (m^2 + n^2)^(3*k))^2 + ((m^2 - n^2)^i * (2*m*n)^(j+1) * (m^2 + n^2)^k)^6 = ((m^2 - n^2)^(3*i) * (2*m*n)^(3*j+2) * (m^2 + n^2)^(3*k+1))^2, so that the number of the form (m^2 - n^2)^(3*i) * (2*m*n)^(3*j+2) * (m^2 + n^2)^(3*k+1) is a term.
When (x, y, z) is a solution of x^2 + y^4 = z^2 (i.e., z = A271576(n)), (x^(3*i+1) * y^(3*j+1) * z^(3*k), x^i * y^(j+1) * z^k, x^(3*i) * y^(3*j+1) * z^(3*k+1)) is a solution of x^2 + y^6 = z^2.
When (x, y, z) is a solution of x^2 + y^6 = z^2, (x^(3*i+1) * y^(3*j) * z^(3*k), x^i * y^(j+1) * z^k, x^(3*i) * y^(3*j) * z^(3*k+1)) is also a solution of x^2 + y^6 = z^2.

Examples

			6^2 + 2^6 = 10^2, 10 is a term.
15^2 + 2^6 = 17^2, 17 is a term.
		

Crossrefs

Programs

  • Mathematica
    z[n_] := Count[n^2 - Range[(n^2 - 1)^(1/6)]^6, _?(IntegerQ[Sqrt[#]] &)] > 0; Select[Range[3200], z]
Showing 1-2 of 2 results.