A174121 Partial sums of A001580.
1, 4, 12, 29, 61, 118, 218, 395, 715, 1308, 2432, 4601, 8841, 17202, 33782, 66775, 132567, 263928, 526396, 1051045, 2100021, 4197614, 8392402, 16781539, 33559331, 67114388, 134223928, 268442385, 536878625, 1073750378, 2147493102, 4294977711, 8589946031
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-14,16,-9,2).
Crossrefs
Cf. A174120.
Programs
-
Mathematica
f[n_]:=Sum[2^i+i^2,{i,0,n}];Table[f[n],{n,0,5!}] Accumulate[Table[2^n+n^2,{n,0,50}]] (* or *) LinearRecurrence[{6,-14,16,-9,2},{1,4,12,29,61},50] (* Harvey P. Dale, Sep 23 2019 *)
-
PARI
Vec(x*(1-2*x+2*x^2-3*x^3)/((1-x)^4*(1-2*x)) + O(x^40)) \\ Colin Barker, Feb 26 2016
Formula
From Colin Barker, Feb 26 2016: (Start)
a(n) = (n-2)*(2*n^2+n+3)/6+2^n.
a(n) = 6*a(n-1)-14*a(n-2)+16*a(n-3)-9*a(n-4)+2*a(n-5) for n>5.
G.f.: x*(1-2*x+2*x^2-3*x^3) / ((1-x)^4*(1-2*x)).
(End)
Comments