cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A302576 Numbers k such that k/10 + 1 is a square.

Original entry on oeis.org

-10, 0, 30, 80, 150, 240, 350, 480, 630, 800, 990, 1200, 1430, 1680, 1950, 2240, 2550, 2880, 3230, 3600, 3990, 4400, 4830, 5280, 5750, 6240, 6750, 7280, 7830, 8400, 8990, 9600, 10230, 10880, 11550, 12240, 12950, 13680, 14430, 15200, 15990, 16800, 17630, 18480, 19350, 20240
Offset: 1

Views

Author

Bruno Berselli, Apr 10 2018

Keywords

Comments

Equivalently, numbers k such that (k + 10)*10 is a square.
The positive terms belong to the fourth column of the array in A185781.

Crossrefs

After -10, subsequence of A174133 because a(n) = ((n-1)^2-1)*(3^2+1).
Similar lists of k for which k/j + 1 is a square: A067998 (j=1), A054000 (j=2), A067725 (j=3), A134582 (j=4), A067724 (j=5), A067726 (j=6), A067727 (j=7), second bisection of A067728 (j=8), A147651 (j=9), this sequence (j=10), A067705 (j=11), second bisection of A067707 (j=12).

Programs

  • GAP
    List([1..50], n -> 10*n*(n-2));
    
  • Julia
    [10*n*(n-2) for n in 1:50] |> println
    
  • Magma
    [10*n*(n-2): n in [1..50]];
  • Mathematica
    Table[10 n (n - 2), {n, 1, 50}]
  • Maxima
    makelist(10*n*(n-2), n, 1, 50);
    
  • PARI
    vector(50, n, nn; 10*n*(n-2))
    
  • Python
    [10*n*(n-2) for n in range(1, 50)]
    
  • Sage
    [10*n*(n-2) for n in (1..50)]
    

Formula

O.g.f.: -10*x*(1 - 3*x)/(1 - x)^3.
E.g.f.: -10*x*(1 - x)*exp(x).
a(n) = a(2-n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 10*n*(n - 2) = 10*A067998(n).
a(n) = A033583(n-1) - 10. - Altug Alkan, Apr 10 2018

A174134 Nonnegative integers m such that m^2 = (a^2-1)*(b^2+1) for some integers a,b.

Original entry on oeis.org

0, 4, 20, 24, 60, 116, 120, 136, 140, 260, 340, 360, 444, 676, 696, 700, 816, 1040, 1476, 2020, 2220, 2280, 2684, 3480, 3940, 4056, 4060, 4080, 4420, 4756, 5516, 6100, 6120, 6460, 6780, 8224, 8840, 8976, 9860, 11700, 13756, 16040, 18564, 21340, 22964
Offset: 1

Views

Author

Max Alekseyev, Apr 01 2010

Keywords

Comments

m belongs to this sequence iff m^2 belongs to A174133.
All terms are multiples of 4.
Showing 1-2 of 2 results.