cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174135 Irregular triangle read by rows: T(n,k), n >= 2, 1 <= k <= n/2, = number of rooted forests with n nodes and k trees, with at least two nodes in each tree.

Original entry on oeis.org

1, 2, 4, 1, 9, 2, 20, 7, 1, 48, 17, 2, 115, 48, 7, 1, 286, 124, 21, 2, 719, 336, 60, 7, 1, 1842, 888, 171, 21, 2, 4766, 2393, 488, 65, 7, 1, 12486, 6419, 1372, 187, 21, 2, 32973, 17376, 3862, 554, 65, 7, 1, 87811, 47097, 10846, 1600, 193, 21, 2, 235381, 128365, 30429, 4644, 574, 65, 7, 1, 634847, 350837, 85365, 13362, 1685, 193, 21, 2
Offset: 2

Views

Author

N. J. A. Sloane, Nov 26 2010

Keywords

Comments

In other words, components consisting of just a root node are forbidden. If this condition is removed, we get A033185.
First column is a version of A000081. Row sums give A174145.
Diagonal sums give A181360 (e.g., 9+7+2+1 = 19).

Examples

			Triangle begins:
1,
2,
4, 1,
9, 2,
20, 7, 1,
48, 17, 2,
115, 48, 7, 1,
286, 124, 21, 2,
719, 336, 60, 7, 1,
1842, 888, 171, 21, 2,
4766, 2393, 488, 65, 7, 1,
12486, 6419, 1372, 187, 21, 2,
32973, 17376, 3862, 554, 65, 7, 1,
87811, 47097, 10846, 1600, 193, 21, 2,
235381, 128365, 30429, 4644, 574, 65, 7, 1,
634847, 350837, 85365, 13362, 1685, 193, 21, 2,
1721159, 962731, 239566, 38459, 4948, 581, 65, 7, 1,
...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    t:= proc(n) option remember; local d, j; `if`(n<=1, n,
          (add(add(d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1))
        end:
    b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(p<1 or i<2, 0, add(b(n-i*j, i-1, p-j) *
           binomial(t(i)+j-1, j), j=0..min(n/i, p) ))))
        end:
    T:= (n, k)-> b(n, n, k):
    seq(seq(T(n, k), k=1..iquo(n, 2)), n=2..18);  # Alois P. Heinz, May 17 2013
  • Mathematica
    t[n_] := t[n] = Module[{d, j}, If[n <= 1, n, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n-j], {j, 1, n-1}]/(n-1)]]; b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[p < 1 || i < 2, 0, Sum[b[n-i*j, i-1, p-j]* Binomial[t[i]+j-1, j], {j, 0, Min[n/i, p]}]]]]; T[n_, k_] := b[n, n, k]; Table[Table[T[n, k], {k, 1, Quotient[n, 2]}], {n, 2, 18}] // Flatten (* Jean-François Alcover, Mar 05 2014, after Alois P. Heinz *)

Formula

G.f.: 1/Product((1-x*y^i)^A000081(i), i=2..infinity).