A174135 Irregular triangle read by rows: T(n,k), n >= 2, 1 <= k <= n/2, = number of rooted forests with n nodes and k trees, with at least two nodes in each tree.
1, 2, 4, 1, 9, 2, 20, 7, 1, 48, 17, 2, 115, 48, 7, 1, 286, 124, 21, 2, 719, 336, 60, 7, 1, 1842, 888, 171, 21, 2, 4766, 2393, 488, 65, 7, 1, 12486, 6419, 1372, 187, 21, 2, 32973, 17376, 3862, 554, 65, 7, 1, 87811, 47097, 10846, 1600, 193, 21, 2, 235381, 128365, 30429, 4644, 574, 65, 7, 1, 634847, 350837, 85365, 13362, 1685, 193, 21, 2
Offset: 2
Examples
Triangle begins: 1, 2, 4, 1, 9, 2, 20, 7, 1, 48, 17, 2, 115, 48, 7, 1, 286, 124, 21, 2, 719, 336, 60, 7, 1, 1842, 888, 171, 21, 2, 4766, 2393, 488, 65, 7, 1, 12486, 6419, 1372, 187, 21, 2, 32973, 17376, 3862, 554, 65, 7, 1, 87811, 47097, 10846, 1600, 193, 21, 2, 235381, 128365, 30429, 4644, 574, 65, 7, 1, 634847, 350837, 85365, 13362, 1685, 193, 21, 2, 1721159, 962731, 239566, 38459, 4948, 581, 65, 7, 1, ...
Links
- Alois P. Heinz, Rows n = 2..200, flattened
Programs
-
Maple
with(numtheory): t:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1)) end: b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1, `if`(p<1 or i<2, 0, add(b(n-i*j, i-1, p-j) * binomial(t(i)+j-1, j), j=0..min(n/i, p) )))) end: T:= (n, k)-> b(n, n, k): seq(seq(T(n, k), k=1..iquo(n, 2)), n=2..18); # Alois P. Heinz, May 17 2013
-
Mathematica
t[n_] := t[n] = Module[{d, j}, If[n <= 1, n, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n-j], {j, 1, n-1}]/(n-1)]]; b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[p < 1 || i < 2, 0, Sum[b[n-i*j, i-1, p-j]* Binomial[t[i]+j-1, j], {j, 0, Min[n/i, p]}]]]]; T[n_, k_] := b[n, n, k]; Table[Table[T[n, k], {k, 1, Quotient[n, 2]}], {n, 2, 18}] // Flatten (* Jean-François Alcover, Mar 05 2014, after Alois P. Heinz *)
Formula
G.f.: 1/Product((1-x*y^i)^A000081(i), i=2..infinity).
Comments