A174145
Number of rooted forests with n nodes in which each component contains at least two nodes.
Original entry on oeis.org
1, 0, 1, 2, 5, 11, 28, 67, 171, 433, 1123, 2924, 7720, 20487, 54838, 147570, 399466, 1086312, 2967517, 8137552, 22395604, 61833349, 171227674, 475442129, 1323449661, 3692461865, 10324097819, 28923331940, 81179488039, 228240293289, 642744665401, 1812762839702
Offset: 0
-
with(numtheory):
t:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0,
add(b(n-i*j, i-1)*binomial(t(i)+j-1, j), j=0..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..32); # Alois P. Heinz, May 17 2013
-
t[n_] := t[n] = If[n <= 1, n, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n-j], {j, 1, n-1}]/(n-1)]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<2, 0, Sum[b[n-i*j, i-1]*Binomial[t[i]+j-1, j], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n] // FullSimplify, {n, 0, 32}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
t[1] = 1; t[n_] := t[n] = Sum[k t[k] t[n - k m]/(n-1), {k, n-1}, {m, (n-1)/k}]; a[n_] := t[n+1] - t[n]; Table[a[n], {n, 0, 32}] (* Vladimir Reshetnikov, Aug 12 2016 *)
A181360
Number of forests of rooted trees containing n nodes not counting the root nodes.
Original entry on oeis.org
1, 1, 3, 7, 19, 47, 127, 330, 889, 2378, 6450, 17510, 47907, 131388, 362081, 1000665, 2774857, 7714695, 21505455, 60084062, 168234804, 471977022, 1326558625, 3734804268, 10531738149, 29742332548, 84111212892, 238176473946, 675269414372, 1916715819186
Offset: 0
Trees for example (leaving out the "^0" factors for clarity):
T(0) = 1, T(1) = 1
T(2) = T(1)^1 + T(0)^2 = 2,
T(3) = T(2)^1 + T(1)^1*T(0)^1 + T(0)^3 = 4,
T(4) = T(3)^1 + T(2)^1*T(0)^1 + T(1)^2 + T(1)^1*T(0)^2 +T(0)^4 = 9,
T(5) = T(4)^1 + T(3)^1*T(0)^1 + T(2)^1*T(1)^1 + T(2)^1*T(0)^2 + T(1)^2*T(0)^1 + T(1)^1*T(0)^3 + T(0)^5 = 20.
Forests for example (leaving out the "^0" factors for clarity):
F(2) = T(2)^1 + T(1)^2 = 3,
F(3) = T(3)^1 + T(2)^1*T(1)^1 + T(1)^3 = 7,
F(4) = T(4)^1 + T(3)^1*T(1)^1 + T(2)^2 + T(2)*T(1)^2 + T(1)^4 = 19,
F(5) = T(5)^1 + T(4)^1*T(1)^1 + T(3)^1*T(2)^1 + T(3)^1*T(1)^2 + T(2)^2*T(1)^1 + T(2)^1*T(1)^3 + T(1)^5 = 47.
{Examples of this a^b definition:
2^1 = 2, 2^2 = 3, 2^3 = 4, 2^4 = 5,
3^1 = 3, 3^2 = 6, 3^3 = 10, 3^4 = 15, (triangular numbers)
4^1 = 4, 4^2 = 10, 4^3 = 20, 4^4 = 35, (tetrahedral numbers)
equivalently a^b = (b == 0 ? 1 : (a == 1 || b == 1 ? a : (a * (a+1)^(b-1) / b))) }
Cf.
A093637 (products of partition numbers).
-
(From N. J. A. Sloane, Nov 26 2010) First read 110 terms of A000081 into array b1
M:=100;
t1:=1/mul((1-x*y^i)^b1[i+1],i=2..M):
t2:=series(t1,y,M):
t3:=series(t2,x,M):
a:=(n,k)->coeff(coeff(t3,x,k),y,n);
g:=n->add(a(n-1+i,i),i=1..n-1);
[seq(g(n),n=1..48)];
# second Maple program:
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(T(i-1)+j-1, j) *g(n-i*j, i-1), j=0..n/i)))
end:
T:= n-> g(n, n):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(T(i)+j-1, j) *b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..40); # Alois P. Heinz, Jul 20 2012
# third Maple program:
g:= proc(n) option remember; `if`(n<=1, n, (add(add(d*
g(d), d=numtheory[divisors](j))*g(n-j), j=1..n-1))/(n-1))
end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
g(d+1), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Sep 19 2017
-
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[T[i-1]+j-1, j]*g[n-i*j, i-1], {j, 0, n/i}]]]; T[n_] := g[n, n]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[T[i]+j-1, j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n] // FullSimplify; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
Showing 1-2 of 2 results.
Comments