cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A255170 a(n) = A087803(n) - n + 1.

Original entry on oeis.org

1, 1, 2, 5, 13, 32, 79, 193, 478, 1196, 3037, 7802, 20287, 53259, 141069, 376449, 1011295, 2732453, 7421128, 20247355, 55469186, 152524366, 420807220, 1164532203, 3231706847, 8991343356, 25075077684, 70082143952, 196268698259, 550695545855, 1547867058852
Offset: 1

Views

Author

Vladimir Reshetnikov, Feb 15 2015

Keywords

Comments

Conjectured extension of A199812: number of distinct values taken by w^w^...^w (with n w's and parentheses inserted in all possible ways) where w is the first transfinite ordinal omega. So far all known terms of A199812 (that is, 20 of them) coincide with this sequence. It is conjectured that A199812 is actually identical to this sequence, but it remains unproved, and is computationally difficult to check for n > 20.

Examples

			a(4) = 1 - 4 + Sum_{k=1..4} A000081(k) = 1 - 4 + 1 + 1 + 2 + 4 = 5.
a(5) = 1 - 5 + Sum_{k=1..5} A000081(k) = 1 - 5 + 1 + 1 + 2 + 4 + 9 = 13.
		

Crossrefs

Cf. A199812 (conjectured to be identical), A087803, A000081, A174145 (2nd differences), A005348, A002845, A198683, A187770, A051491.

Programs

  • Maple
    with(numtheory):
    t:= proc(n) option remember; `if`(n<2, n, (add(add(
          d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0,
          add(b(n-i*j, i-1)*binomial(t(i)+j-1, j), j=0..n/i)))
        end:
    a:= proc(n) option remember; `if`(n<3, 1,
          b(n-1$2) +2*a(n-1) -a(n-2))
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Feb 17 2015
  • Mathematica
    t[1] = a[1] = 1; t[n_] := t[n] = Sum[k t[k] t[n - k m]/(n-1), {k, n}, {m, (n-1)/k}]; a[n_] := a[n] = a[n-1] + t[n] - 1; Table[a[n], {n, 40}] (* Vladimir Reshetnikov, Aug 12 2016 *)

Formula

a(n) = 1 - n + Sum_{k=1..n} A000081(k).
Recurrence: a(1) = 1, a(n+1) = a(n) + A000081(n+1) - 1.
Recurrence: a(1) = a(2) = 1, a(n) = A174145(n-1) + 2*a(n-1) - a(n-2).
Asymptotics: a(n) ~ c * d^n / n^(3/2), where c = A187770 / (1 - 1 / A051491) = 0.664861... and d = A051491 = 2.955765...

Extensions

Simpler definition and program in terms of A000081. - Vladimir Reshetnikov, Aug 12 2016
Renamed. - Vladimir Reshetnikov, Aug 23 2016

A174135 Irregular triangle read by rows: T(n,k), n >= 2, 1 <= k <= n/2, = number of rooted forests with n nodes and k trees, with at least two nodes in each tree.

Original entry on oeis.org

1, 2, 4, 1, 9, 2, 20, 7, 1, 48, 17, 2, 115, 48, 7, 1, 286, 124, 21, 2, 719, 336, 60, 7, 1, 1842, 888, 171, 21, 2, 4766, 2393, 488, 65, 7, 1, 12486, 6419, 1372, 187, 21, 2, 32973, 17376, 3862, 554, 65, 7, 1, 87811, 47097, 10846, 1600, 193, 21, 2, 235381, 128365, 30429, 4644, 574, 65, 7, 1, 634847, 350837, 85365, 13362, 1685, 193, 21, 2
Offset: 2

Views

Author

N. J. A. Sloane, Nov 26 2010

Keywords

Comments

In other words, components consisting of just a root node are forbidden. If this condition is removed, we get A033185.
First column is a version of A000081. Row sums give A174145.
Diagonal sums give A181360 (e.g., 9+7+2+1 = 19).

Examples

			Triangle begins:
1,
2,
4, 1,
9, 2,
20, 7, 1,
48, 17, 2,
115, 48, 7, 1,
286, 124, 21, 2,
719, 336, 60, 7, 1,
1842, 888, 171, 21, 2,
4766, 2393, 488, 65, 7, 1,
12486, 6419, 1372, 187, 21, 2,
32973, 17376, 3862, 554, 65, 7, 1,
87811, 47097, 10846, 1600, 193, 21, 2,
235381, 128365, 30429, 4644, 574, 65, 7, 1,
634847, 350837, 85365, 13362, 1685, 193, 21, 2,
1721159, 962731, 239566, 38459, 4948, 581, 65, 7, 1,
...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    t:= proc(n) option remember; local d, j; `if`(n<=1, n,
          (add(add(d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1))
        end:
    b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(p<1 or i<2, 0, add(b(n-i*j, i-1, p-j) *
           binomial(t(i)+j-1, j), j=0..min(n/i, p) ))))
        end:
    T:= (n, k)-> b(n, n, k):
    seq(seq(T(n, k), k=1..iquo(n, 2)), n=2..18);  # Alois P. Heinz, May 17 2013
  • Mathematica
    t[n_] := t[n] = Module[{d, j}, If[n <= 1, n, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n-j], {j, 1, n-1}]/(n-1)]]; b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[p < 1 || i < 2, 0, Sum[b[n-i*j, i-1, p-j]* Binomial[t[i]+j-1, j], {j, 0, Min[n/i, p]}]]]]; T[n_, k_] := b[n, n, k]; Table[Table[T[n, k], {k, 1, Quotient[n, 2]}], {n, 2, 18}] // Flatten (* Jean-François Alcover, Mar 05 2014, after Alois P. Heinz *)

Formula

G.f.: 1/Product((1-x*y^i)^A000081(i), i=2..infinity).

A199812 Number of distinct values taken by w^w^...^w (with n w's and parentheses inserted in all possible ways) where w is the first transfinite ordinal omega.

Original entry on oeis.org

1, 1, 2, 5, 13, 32, 79, 193, 478, 1196, 3037, 7802, 20287, 53259, 141069, 376449, 1011295, 2732453, 7421128, 20247355
Offset: 1

Views

Author

Vladimir Reshetnikov, Nov 10 2011

Keywords

Comments

Any transfinite ordinal can be used instead of omega, yielding the same sequence.
It appears that 2nd differences of this sequence give A174145 (starting from offset 2).
Conjectured extension of this sequence is given by A255170.

Examples

			For n=5 there are 14 possible parenthesizations, but only 13 of them produce distinct ordinals: (((w^w)^w)^w)^w < ((w^w)^w)^(w^w) < ((w^w)^(w^w))^w < ((w^(w^w))^w)^w < (w^(w^w))^(w^w) < (w^w)^((w^w)^w) < (w^((w^w)^w))^w < w^(((w^w)^w)^w) < (w^w)^(w^(w^w)) = w^((w^w)^(w^w)) < (w^(w^(w^w)))^w < w^((w^(w^w))^w) < w^(w^((w^w)^w)) < w^(w^(w^(w^w))). So, a(5)=13.
		

Crossrefs

Cf. A000108 (upper bound), A174145 (2nd differences?), A255170 (conjectured extension), A005348, A002845, A198683, A000081 (similar asymptotics), A051491.

Programs

  • Mathematica
    (* Slow exhaustive search *)
    _ \[Precedes] {} = False;
    {} \[Precedes] {} = True;
    {a_ \[Diamond] , __} \[Precedes] {b_ \[Diamond] , __} := a \[Precedes] b /; a =!= b;
    {a_ \[Diamond] m_, _} \[Precedes] {a_ \[Diamond] n_, _} := m < n /; m != n;
    {z_, x___} \[Precedes] {z_, y___} := {x} \[Precedes] {y};
    m_ \[CirclePlus] {} := m;
    {} \[CirclePlus] n_ := n;
    {x___, a_ \[Diamond] m_} \[CirclePlus] {a_ \[Diamond] n_, y___} := {x, a \[Diamond] (m + n), y};
    {x___, a_ \[Diamond] m_} \[CirclePlus] z : {b_ \[Diamond] n_, y___} := If[a \[Precedes] b, {x} \[CirclePlus] z, {x, a \[Diamond] m, b \[Diamond] n, y}];
    {} \[CircleTimes] _ = {};
    _ \[CircleTimes] {} = {};
    {a_ \[Diamond] m_, x___} \[CircleTimes] {b_ \[Diamond] n_} := If[b === {}, {a \[Diamond] (m n), x}, {(a \[CirclePlus] b) \[Diamond] n}];
    x_ \[CircleTimes] {y_, z__} := x \[CircleTimes] {y} \[CirclePlus] x \[CircleTimes] {z};
    f[1] = {{{} \[Diamond] 1}};
    f[n_] := f[n] = Union[Flatten[Table[Outer[#1 \[CircleTimes] {#2 \[Diamond] 1} &, f[k], f[n - k], 1], {k, n - 1}], 2]];
    Table[Length[f[n]], {n, 1, 17}]

Formula

Conjecture: a(n) ~ c * d^n * n^(-3/2), where c = 0.664861... and d = A051491 = 2.955765... - Vladimir Reshetnikov, Aug 11 2016

Extensions

a(18)-a(20) from Robert G. Wilson v, Sep 15 2012
Showing 1-3 of 3 results.