A174138 Numbers congruent to {5,6,7,8,9,15,16,17,18,19} mod 25.
5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44, 55, 56, 57, 58, 59, 65, 66, 67, 68, 69, 80, 81, 82, 83, 84, 90, 91, 92, 93, 94, 105, 106, 107, 108, 109, 115, 116, 117, 118, 119, 130, 131, 132, 133, 134, 140, 141, 142, 143, 144, 155, 156, 157
Offset: 1
Examples
As 15 = 10 + 5, 15 is a term since 5 is included and all other candidate partitions have more than two parts. Similarly, as 30 = 25 + 5, 30 is a term. However, 45 = 25 + 10 + 10 is not a term as it contains no part of size 5.
Links
- Index entries for sequences related to making change.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
Magma
[n : n in [1..200] | n mod 25 in [5, 6, 7, 8, 9, 15, 16, 17, 18, 19]]; // Vincenzo Librandi, Mar 22 2015
-
Mathematica
Table[n + 9 + 5 Floor[(Floor[(n - 1)/5] - 1)/2] + 10 Floor[Floor[(n - 1)/5]/2], {n, 100}] (* Wesley Ivan Hurt, Mar 22 2015 *)
Formula
a(10+n) = a(n) + 25 for n >= 1.
a(n) = a(n-1) + a(n-10) - a(n-11). G.f.: x*(5+x+x^2+x^3+x^4+6*x^5+x^6+x^7+x^8+x^9+6*x^10) / ( (1+x) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = n+9+5*floor((floor((n-1)/5)-1)/2)+10*floor(floor((n-1)/5)/2). - Wesley Ivan Hurt, Mar 22 2015
Comments