A174145 Number of rooted forests with n nodes in which each component contains at least two nodes.
1, 0, 1, 2, 5, 11, 28, 67, 171, 433, 1123, 2924, 7720, 20487, 54838, 147570, 399466, 1086312, 2967517, 8137552, 22395604, 61833349, 171227674, 475442129, 1323449661, 3692461865, 10324097819, 28923331940, 81179488039, 228240293289, 642744665401, 1812762839702
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
with(numtheory): t:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1)) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0, add(b(n-i*j, i-1)*binomial(t(i)+j-1, j), j=0..n/i))) end: a:= n-> b(n, n): seq(a(n), n=0..32); # Alois P. Heinz, May 17 2013
-
Mathematica
t[n_] := t[n] = If[n <= 1, n, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n-j], {j, 1, n-1}]/(n-1)]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<2, 0, Sum[b[n-i*j, i-1]*Binomial[t[i]+j-1, j], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n] // FullSimplify, {n, 0, 32}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *) t[1] = 1; t[n_] := t[n] = Sum[k t[k] t[n - k m]/(n-1), {k, n-1}, {m, (n-1)/k}]; a[n_] := t[n+1] - t[n]; Table[a[n], {n, 0, 32}] (* Vladimir Reshetnikov, Aug 12 2016 *)
Formula
a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = 0.8603881121111431... . - Vaclav Kotesovec, Sep 10 2014
In the asymptotics above the constant c = A187770 * (A051491 - 1). - Vladimir Reshetnikov, Aug 12 2016
Comments