cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174159 Triangle read by rows. T(n, k) = 2 * Eulerian(n, k - 1) - binomial(n - 1, k - 1)* binomial(n, k - 1) / k.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 16, 16, 1, 1, 42, 112, 42, 1, 1, 99, 554, 554, 99, 1, 1, 219, 2277, 4657, 2277, 219, 1, 1, 466, 8390, 30748, 30748, 8390, 466, 1, 1, 968, 28880, 175292, 310616, 175292, 28880, 968, 1, 1, 1981, 95140, 907864, 2615416, 2615416, 907864, 95140
Offset: 1

Views

Author

Roger L. Bagula, Mar 10 2010

Keywords

Examples

			[ 1] 1;
[ 2] 1,    1;
[ 3] 1,    5,     1;
[ 4] 1,   16,    16,      1;
[ 5] 1,   42,   112,     42,       1;
[ 6] 1,   99,   554,    554,      99,       1;
[ 7] 1,  219,  2277,   4657,    2277,     219,      1;
[ 8] 1,  466,  8390,  30748,   30748,    8390,    466,     1;
[ 9] 1,  968, 28880, 175292,  310616,  175292,  28880,   968,    1;
[10] 1, 1981, 95140, 907864, 2615416, 2615416, 907864, 95140, 1981, 1;
		

Crossrefs

Cf. A001263, A008292, A356118 (row sums).

Programs

  • Maple
    # Works also if based on (0, 0).
    T := (n,k) -> `if`(k = 0, k^n, 2*combinat:-eulerian1(n, k-1) - binomial(n-1, k-1)* binomial(n, k-1) / k):
    for n from 1 to 6 do seq(T(n,k), k=1..n) od;  # Peter Luschny, Jul 27 2022
  • Mathematica
    Needs["Combinatorica`"];
    T[n_, m_] := 2*Eulerian[n, m - 1] - Binomial[n - 1, m - 1]*Binomial[n, m - 1]/m;
    Table[T[n, m], {n, 1, 10}, {m, 1, n}] // Flatten

Extensions

Edited by Peter Luschny, Jul 27 2022