A174159 Triangle read by rows. T(n, k) = 2 * Eulerian(n, k - 1) - binomial(n - 1, k - 1)* binomial(n, k - 1) / k.
1, 1, 1, 1, 5, 1, 1, 16, 16, 1, 1, 42, 112, 42, 1, 1, 99, 554, 554, 99, 1, 1, 219, 2277, 4657, 2277, 219, 1, 1, 466, 8390, 30748, 30748, 8390, 466, 1, 1, 968, 28880, 175292, 310616, 175292, 28880, 968, 1, 1, 1981, 95140, 907864, 2615416, 2615416, 907864, 95140
Offset: 1
Examples
[ 1] 1; [ 2] 1, 1; [ 3] 1, 5, 1; [ 4] 1, 16, 16, 1; [ 5] 1, 42, 112, 42, 1; [ 6] 1, 99, 554, 554, 99, 1; [ 7] 1, 219, 2277, 4657, 2277, 219, 1; [ 8] 1, 466, 8390, 30748, 30748, 8390, 466, 1; [ 9] 1, 968, 28880, 175292, 310616, 175292, 28880, 968, 1; [10] 1, 1981, 95140, 907864, 2615416, 2615416, 907864, 95140, 1981, 1;
Programs
-
Maple
# Works also if based on (0, 0). T := (n,k) -> `if`(k = 0, k^n, 2*combinat:-eulerian1(n, k-1) - binomial(n-1, k-1)* binomial(n, k-1) / k): for n from 1 to 6 do seq(T(n,k), k=1..n) od; # Peter Luschny, Jul 27 2022
-
Mathematica
Needs["Combinatorica`"]; T[n_, m_] := 2*Eulerian[n, m - 1] - Binomial[n - 1, m - 1]*Binomial[n, m - 1]/m; Table[T[n, m], {n, 1, 10}, {m, 1, n}] // Flatten
Extensions
Edited by Peter Luschny, Jul 27 2022