A174183 a(n) is the period k such that binomial(m, n) (mod 10) = binomial(m + k, n) (mod 10).
1, 10, 20, 60, 240, 1200, 7200, 50400, 403200, 3628800, 36288000, 399168000, 4790016000, 62270208000, 871782912000, 13076743680000, 209227898880000, 3556874280960000, 64023737057280000, 1216451004088320000
Offset: 0
Examples
x(0)= 0.C(1,0)C(2,0)C(3,0) ... = 0.11111111111... and p(0)=1 ; x(1)= 0.C(1,1)C(2,1)C(3,1) ... = 0.12345678901234... and p(1) = 10 ; x(2)= 0.C(2,2)C(3,2)C(4,2) ... = 0.13605186556815063100 13605186556815063100... and p(2)=20.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..449
- Michel Lagneau, Proof
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081, 2014
Crossrefs
Programs
-
Mathematica
Join[{1},Array[10#!&,20]] (* Harvey P. Dale, Feb 18 2018 *)
-
Python
from math import factorial def A174183(n): return 10*factorial(n) if n else 1 # Chai Wah Wu, Aug 07 2025
Formula
a(0)=1, and a(n) = 10 * n! for n >= 1.
Extensions
Additional comments, and errors in examples corrected by Michel Lagneau, May 07 2010
Comments