cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174264 Irregular triangle T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1/x)*(1-x)^(3*n+1)*Sum_{k >= 0} (k*(k+1)*(2*k+1)/6)^n*x^k and p(0, x) = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 18, 42, 18, 1, 1, 115, 1539, 5065, 5065, 1539, 115, 1, 1, 612, 30369, 359056, 1439038, 2255448, 1439038, 359056, 30369, 612, 1, 1, 3109, 487944, 16069256, 177275075, 808273143, 1688579472, 1688579472, 808273143, 177275075, 16069256, 487944, 3109, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 14 2010

Keywords

Examples

			Irregular triangle begins as:
  1;
  1,   1;
  1,  18,    42,     18,       1;
  1, 115,  1539,   5065,    5065,    1539,     115,      1;
  1, 612, 30369, 359056, 1439038, 2255448, 1439038, 359056, 30369, 612, 1;
		

Crossrefs

Programs

  • Mathematica
    (* First program *)
    p[n_, x_]:= p[n,x]= If[n==0, 1, (1-x)^(3*n+1)*Sum[(k*(k+1)*(2*k+1)/6)^n*x^k, {k, 0, Infinity}]/x];
    Table[CoefficientList[p[n, x], x], {n,0,10}]//Flatten
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[n<2, Binomial[n, k], Sum[(-1)^(k-j+1)*Binomial[3*n+1, k-j +1]*(j*(1+j)*(1+2*j)/6)^n, {j,0,k+1}]];
    Join[{1}, Table[T[n, k], {n,0,10}, {k,0,3*n-2}]//Flatten] (* G. C. Greubel, Mar 25 2022 *)
  • Sage
    @CachedFunction
    def T(n,k):
        if (n<2): return binomial(n,k)
        else: return sum( (-1)^(k-j+1)*binomial(3*n+1, k-j+1)*(j*(1+j)*(1+2*j)/6)^n for j in (0..k+1) )
    [1]+flatten([[T(n,k) for k in (0..3*n-2)] for n in (0..10)]) # G. C. Greubel, Mar 25 2022

Formula

T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1/x)*(1-x)^(3*n+1)*Sum_{k >= 0} (k*(k+1)*(2*k+1)/6)^n*x^k and p(0, x) = 1.
T(n, k) = Sum_{j=0..k+1} (-1)^(k-j+1)*binomial(3*n+1, k-j+1)*(j*(1+j)*(1+2*j)/6)^n, with T(0, k) = T(1, k) = 1. - G. C. Greubel, Mar 25 2022

Extensions

Edited by G. C. Greubel, Mar 25 2022