A174264 Irregular triangle T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1/x)*(1-x)^(3*n+1)*Sum_{k >= 0} (k*(k+1)*(2*k+1)/6)^n*x^k and p(0, x) = 1, read by rows.
1, 1, 1, 1, 18, 42, 18, 1, 1, 115, 1539, 5065, 5065, 1539, 115, 1, 1, 612, 30369, 359056, 1439038, 2255448, 1439038, 359056, 30369, 612, 1, 1, 3109, 487944, 16069256, 177275075, 808273143, 1688579472, 1688579472, 808273143, 177275075, 16069256, 487944, 3109, 1
Offset: 0
Examples
Irregular triangle begins as: 1; 1, 1; 1, 18, 42, 18, 1; 1, 115, 1539, 5065, 5065, 1539, 115, 1; 1, 612, 30369, 359056, 1439038, 2255448, 1439038, 359056, 30369, 612, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
Programs
-
Mathematica
(* First program *) p[n_, x_]:= p[n,x]= If[n==0, 1, (1-x)^(3*n+1)*Sum[(k*(k+1)*(2*k+1)/6)^n*x^k, {k, 0, Infinity}]/x]; Table[CoefficientList[p[n, x], x], {n,0,10}]//Flatten (* Second program *) T[n_, k_]:= T[n, k]= If[n<2, Binomial[n, k], Sum[(-1)^(k-j+1)*Binomial[3*n+1, k-j +1]*(j*(1+j)*(1+2*j)/6)^n, {j,0,k+1}]]; Join[{1}, Table[T[n, k], {n,0,10}, {k,0,3*n-2}]//Flatten] (* G. C. Greubel, Mar 25 2022 *)
-
Sage
@CachedFunction def T(n,k): if (n<2): return binomial(n,k) else: return sum( (-1)^(k-j+1)*binomial(3*n+1, k-j+1)*(j*(1+j)*(1+2*j)/6)^n for j in (0..k+1) ) [1]+flatten([[T(n,k) for k in (0..3*n-2)] for n in (0..10)]) # G. C. Greubel, Mar 25 2022
Formula
T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1/x)*(1-x)^(3*n+1)*Sum_{k >= 0} (k*(k+1)*(2*k+1)/6)^n*x^k and p(0, x) = 1.
T(n, k) = Sum_{j=0..k+1} (-1)^(k-j+1)*binomial(3*n+1, k-j+1)*(j*(1+j)*(1+2*j)/6)^n, with T(0, k) = T(1, k) = 1. - G. C. Greubel, Mar 25 2022
Extensions
Edited by G. C. Greubel, Mar 25 2022