A174273 Inverse Moebius transform of A035263.
1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 3, 2, 3, 2, 4, 4, 2, 2, 4, 3, 2, 4, 4, 2, 4, 2, 3, 4, 2, 4, 6, 2, 2, 4, 4, 2, 4, 2, 4, 6, 2, 2, 6, 3, 3, 4, 4, 2, 4, 4, 4, 4, 2, 2, 8, 2, 2, 6, 4, 4, 4, 2, 4, 4, 4, 2, 6, 2, 2, 6, 4, 4, 4, 2, 6, 5, 2, 2, 8, 4, 2, 4, 4, 2, 6, 4, 4, 4, 2, 4, 6, 2, 3, 6, 6, 2, 4, 2, 4, 8
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
f[p_, e_] := e + 1 - If[p == 2, Floor[(e + 1)/2], 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 13 2022 *)
-
PARI
A174273(n) = sumdiv(n,d,(valuation(2*d,2)%2)); \\ Antti Karttunen, Sep 27 2018
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,2]+1-if(f[i,1] == 2, floor((f[i,2]+1)/2), 0)); } \\ Amiram Eldar, Nov 13 2022
Formula
Dirichlet g.f.: 2^s*(zeta(s))^2/(2^s+1). - R. J. Mathar, Feb 06 2011
From Amiram Eldar, Nov 13 2022: (Start)
Multiplicative with s(2^e) = e+1-floor((e+1)/2) and a(p^e) = e+1 if p>2.
Sum_{k=1..n} a(k) ~ (2/3)*n*log(n) + (2/3)*(2*gamma - 1 + log(2)/2)*n, where gamma is Euler's constant (A001620). (End)
Extensions
More terms from Antti Karttunen, Sep 27 2018