cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174273 Inverse Moebius transform of A035263.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 3, 2, 3, 2, 4, 4, 2, 2, 4, 3, 2, 4, 4, 2, 4, 2, 3, 4, 2, 4, 6, 2, 2, 4, 4, 2, 4, 2, 4, 6, 2, 2, 6, 3, 3, 4, 4, 2, 4, 4, 4, 4, 2, 2, 8, 2, 2, 6, 4, 4, 4, 2, 4, 4, 4, 2, 6, 2, 2, 6, 4, 4, 4, 2, 6, 5, 2, 2, 8, 4, 2, 4, 4, 2, 6, 4, 4, 4, 2, 4, 6, 2, 3, 6, 6, 2, 4, 2, 4, 8
Offset: 1

Views

Author

Ralf Stephan, Nov 27 2010

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := e + 1 - If[p == 2, Floor[(e + 1)/2], 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    A174273(n) = sumdiv(n,d,(valuation(2*d,2)%2)); \\ Antti Karttunen, Sep 27 2018
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,2]+1-if(f[i,1] == 2, floor((f[i,2]+1)/2), 0)); } \\ Amiram Eldar, Nov 13 2022

Formula

a(1) = 1, a(2n) = -a(n) + A000005(2n), a(2n+1) = sigma(2n+1) (A000203).
Dirichlet g.f.: 2^s*(zeta(s))^2/(2^s+1). - R. J. Mathar, Feb 06 2011
From Amiram Eldar, Nov 13 2022: (Start)
Multiplicative with s(2^e) = e+1-floor((e+1)/2) and a(p^e) = e+1 if p>2.
Sum_{k=1..n} a(k) ~ (2/3)*n*log(n) + (2/3)*(2*gamma - 1 + log(2)/2)*n, where gamma is Euler's constant (A001620). (End)

Extensions

More terms from Antti Karttunen, Sep 27 2018