cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174298 Triangle T(n, k) = binomial(n, k)*( n!/k! if floor(n/2) >= k otherwise n!/(n-k)! ), read by rows.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 6, 18, 18, 6, 24, 96, 72, 96, 24, 120, 600, 600, 600, 600, 120, 720, 4320, 5400, 2400, 5400, 4320, 720, 5040, 35280, 52920, 29400, 29400, 52920, 35280, 5040, 40320, 322560, 564480, 376320, 117600, 376320, 564480, 322560, 40320, 362880, 3265920, 6531840, 5080320, 1905120, 1905120, 5080320, 6531840, 3265920, 362880
Offset: 0

Views

Author

Roger L. Bagula, Mar 15 2010

Keywords

Examples

			Triangle begins as:
      1;
      1,      1;
      2,      4,      2;
      6,     18,     18,      6;
     24,     96,     72,     96,     24;
    120,    600,    600,    600,    600,    120;
    720,   4320,   5400,   2400,   5400,   4320,    720;
   5040,  35280,  52920,  29400,  29400,  52920,  35280,   5040;
  40320, 322560, 564480, 376320, 117600, 376320, 564480, 322560, 40320;
		

Crossrefs

Cf. A295383.

Programs

  • Magma
    A174298:= func< n,k | Floor(n/2) gt k select Factorial(n-k)*Binomial(n,k)^2 else Factorial(k)*Binomial(n,k)^2 >;
    [A174298(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 24 2021
    
  • Mathematica
    T[n_, k_]:= Binomial[n, k]*If[Floor[n/2]>=k, n!/k!, n!/(n-k)!];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
  • Sage
    def A174298(n,k): return binomial(n,k)^2*( factorial(n-k) if ((n//2) > k-1) else factorial(k))
    flatten([[A174298(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 24 2021

Formula

T(n, k) = binomial(n, k)*( n!/k! if floor(n/2) >= k otherwise n!/(n-k)! ).
From G. C. Greubel, Nov 24 2021: (Start)
T(n, k) = binomial(n, k)^2*( (n-k)! if floor(n/2) >= k otherwise k! ).
T(n, 0) = T(n, n) = n!.
T(n, k) = T(n, n-k).
T(2*n, n) = (-1)^n*A295383(n). (End)

Extensions

Edited by G. C. Greubel, Nov 24 2021