A174298 Triangle T(n, k) = binomial(n, k)*( n!/k! if floor(n/2) >= k otherwise n!/(n-k)! ), read by rows.
1, 1, 1, 2, 4, 2, 6, 18, 18, 6, 24, 96, 72, 96, 24, 120, 600, 600, 600, 600, 120, 720, 4320, 5400, 2400, 5400, 4320, 720, 5040, 35280, 52920, 29400, 29400, 52920, 35280, 5040, 40320, 322560, 564480, 376320, 117600, 376320, 564480, 322560, 40320, 362880, 3265920, 6531840, 5080320, 1905120, 1905120, 5080320, 6531840, 3265920, 362880
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 2, 4, 2; 6, 18, 18, 6; 24, 96, 72, 96, 24; 120, 600, 600, 600, 600, 120; 720, 4320, 5400, 2400, 5400, 4320, 720; 5040, 35280, 52920, 29400, 29400, 52920, 35280, 5040; 40320, 322560, 564480, 376320, 117600, 376320, 564480, 322560, 40320;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Cf. A295383.
Programs
-
Magma
A174298:= func< n,k | Floor(n/2) gt k select Factorial(n-k)*Binomial(n,k)^2 else Factorial(k)*Binomial(n,k)^2 >; [A174298(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 24 2021
-
Mathematica
T[n_, k_]:= Binomial[n, k]*If[Floor[n/2]>=k, n!/k!, n!/(n-k)!]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
-
Sage
def A174298(n,k): return binomial(n,k)^2*( factorial(n-k) if ((n//2) > k-1) else factorial(k)) flatten([[A174298(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 24 2021
Formula
T(n, k) = binomial(n, k)*( n!/k! if floor(n/2) >= k otherwise n!/(n-k)! ).
From G. C. Greubel, Nov 24 2021: (Start)
T(n, k) = binomial(n, k)^2*( (n-k)! if floor(n/2) >= k otherwise k! ).
T(n, 0) = T(n, n) = n!.
T(n, k) = T(n, n-k).
T(2*n, n) = (-1)^n*A295383(n). (End)
Extensions
Edited by G. C. Greubel, Nov 24 2021