cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A174408 Primes of the form A174335(i)-1 or A174335(i)+1.

Original entry on oeis.org

17, 257, 2591, 2593, 239999, 2488319, 27659519, 27659521, 330301441, 4232632319, 58060799999, 13243436236801, 70614415872000001, 3429209878281350809286344704000001, 1665505492033205854772229590583093971095149084672000000001
Offset: 1

Views

Author

Jonathan Vos Post, Mar 19 2010

Keywords

Examples

			a(1)  =                17 = 16 *  1^3 *  1! + 1 is prime.
a(2)  =               257 = 16 *  2^3 *  2! + 1 is prime.
a(3)  =              2591 = 16 *  3^3 *  3! - 1 is prime.
a(4)  =              2593 = 16 *  3^3 *  3! + 1 is prime.
a(5)  =            239999 = 16 *  5^3 *  5! - 1 is prime.
a(6)  =           2488319 = 16 *  6^3 *  6! - 1 is prime.
a(7)  =          27659519 = 16 *  7^3 *  7! - 1 is prime.
a(8)  =          27659521 = 16 *  7^3 *  7! + 1 is prime.
a(9)  =         330301441 = 16 *  8^3 *  8! + 1 is prime.
a(10) =        4232632319 = 16 *  9^3 *  9! - 1 is prime.
a(11) =       58060799999 = 16 * 10^3 * 10! - 1 is prime.
a(12) =    13243436236801 = 16 * 12^3 * 12! + 1 is prime.
a(13) = 70614415872000001 = 16 * 15^3 * 15! + 1 is prime.
		

Crossrefs

Programs

  • Maple
    A174335 := proc(n) 16*n^3*n! ; end proc: for i from 1 to 60 do a := A174335(i) ; if isprime(a-1) then printf("%d,",a-1) ; end if; if isprime(a+1) then printf("%d,",a+1) ; end if; end do: # R. J. Mathar, Apr 15 2010

Formula

a(n) = {A000040(i)} INTERSECTION ({16*(j^3)*(j!) - 1} UNION {16*(k^3)*(k!) - 1}).

Extensions

One more term from R. J. Mathar, Apr 15 2010
Showing 1-1 of 1 results.