A174345 Triangle T(n, k) = (1/k)*binomial(n-1, k-1)*binomial(n, k-1)*2^(k-1) if floor(n/2) >= k, otherwise (1/k)*binomial(n-1, k-1)*binomial(n, k-1)*2^(n-k), read by rows.
1, 1, 1, 1, 6, 1, 1, 12, 12, 1, 1, 20, 80, 20, 1, 1, 30, 200, 200, 30, 1, 1, 42, 420, 1400, 420, 42, 1, 1, 56, 784, 3920, 3920, 784, 56, 1, 1, 72, 1344, 9408, 28224, 9408, 1344, 72, 1, 1, 90, 2160, 20160, 84672, 84672, 20160, 2160, 90, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 6, 1; 1, 12, 12, 1; 1, 20, 80, 20, 1; 1, 30, 200, 200, 30, 1; 1, 42, 420, 1400, 420, 42, 1; 1, 56, 784, 3920, 3920, 784, 56, 1; 1, 72, 1344, 9408, 28224, 9408, 1344, 72, 1; 1, 90, 2160, 20160, 84672, 84672, 20160, 2160, 90, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Mathematica
Table[(Binomial[n-1, k-1]*Binomial[n, k-1]/k)*If[Floor[n/2]>=k, 2^(k-1), 2^(n-k)], {n,12}, {k,n}]//Flatten
-
Sage
def A174345(n,k): b=binomial if ((n//2)>k-1): return (1/(n+1))*b(n-1, k-1)*b(n+1, k)*2^(k-1) else: return (1/(n+1))*b(n-1, k-1)*b(n+1, k)*2^(n-k) flatten([[A174345(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Nov 28 2021
Formula
T(n, k) = (1/k)*binomial(n-1, k-1)*binomial(n, k-1)*2^(k-1) if floor(n/2) >= k, otherwise (1/k)*binomial(n-1, k-1)*binomial(n, k-1)*2^(n-k).
T(n, n-k) = T(n, k).
From G. C. Greubel, Nov 28 2021: (Start)
T(n, n-1) = A180291(n), n > 1.
T(n, n-1) = 2*A000217(n-1), n > 2. (End)
Extensions
Edited by G. C. Greubel, Nov 28 2021