cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174345 Triangle T(n, k) = (1/k)*binomial(n-1, k-1)*binomial(n, k-1)*2^(k-1) if floor(n/2) >= k, otherwise (1/k)*binomial(n-1, k-1)*binomial(n, k-1)*2^(n-k), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 12, 12, 1, 1, 20, 80, 20, 1, 1, 30, 200, 200, 30, 1, 1, 42, 420, 1400, 420, 42, 1, 1, 56, 784, 3920, 3920, 784, 56, 1, 1, 72, 1344, 9408, 28224, 9408, 1344, 72, 1, 1, 90, 2160, 20160, 84672, 84672, 20160, 2160, 90, 1
Offset: 1

Views

Author

Roger L. Bagula, Mar 16 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  6,    1;
  1, 12,   12,     1;
  1, 20,   80,    20,     1;
  1, 30,  200,   200,    30,     1;
  1, 42,  420,  1400,   420,    42,     1;
  1, 56,  784,  3920,  3920,   784,    56,    1;
  1, 72, 1344,  9408, 28224,  9408,  1344,   72,  1;
  1, 90, 2160, 20160, 84672, 84672, 20160, 2160, 90,  1;
		

Crossrefs

Programs

  • Mathematica
    Table[(Binomial[n-1, k-1]*Binomial[n, k-1]/k)*If[Floor[n/2]>=k, 2^(k-1), 2^(n-k)], {n,12}, {k,n}]//Flatten
  • Sage
    def A174345(n,k):
        b=binomial
        if ((n//2)>k-1): return (1/(n+1))*b(n-1, k-1)*b(n+1, k)*2^(k-1)
        else: return (1/(n+1))*b(n-1, k-1)*b(n+1, k)*2^(n-k)
    flatten([[A174345(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Nov 28 2021

Formula

T(n, k) = (1/k)*binomial(n-1, k-1)*binomial(n, k-1)*2^(k-1) if floor(n/2) >= k, otherwise (1/k)*binomial(n-1, k-1)*binomial(n, k-1)*2^(n-k).
T(n, n-k) = T(n, k).
From G. C. Greubel, Nov 28 2021: (Start)
T(n, n-1) = A180291(n), n > 1.
T(n, n-1) = 2*A000217(n-1), n > 2. (End)

Extensions

Edited by G. C. Greubel, Nov 28 2021