A174346 Triangle T(n, k) = (binomial(n-1, k-1)*binomial(n, k-1)/k) * ( 3^(k-1) if floor(n/2) >= k, otherwise 3^(n-k) ), read by rows.
1, 1, 1, 1, 9, 1, 1, 18, 18, 1, 1, 30, 180, 30, 1, 1, 45, 450, 450, 45, 1, 1, 63, 945, 4725, 945, 63, 1, 1, 84, 1764, 13230, 13230, 1764, 84, 1, 1, 108, 3024, 31752, 142884, 31752, 3024, 108, 1, 1, 135, 4860, 68040, 428652, 428652, 68040, 4860, 135, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 9, 1; 1, 18, 18, 1; 1, 30, 180, 30, 1; 1, 45, 450, 450, 45, 1; 1, 63, 945, 4725, 945, 63, 1; 1, 84, 1764, 13230, 13230, 1764, 84, 1; 1, 108, 3024, 31752, 142884, 31752, 3024, 108, 1; 1, 135, 4860, 68040, 428652, 428652, 68040, 4860, 135, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Cf. A081582.
Programs
-
Magma
function T(n,k) if Floor(n/2) gt k-1 then return (1/n)*Binomial(n,k)*Binomial(n,k-1)*3^(k-1); else return (1/n)*Binomial(n,k)*Binomial(n,k-1)*3^(n-k); end if; return T; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 26 2021
-
Mathematica
T[n_,k_]:= (Binomial[n-1, k-1]*Binomial[n, k-1]/k)*If[Floor[n/2]>k-1, 3^(k-1), 3^(n-k)]; Table[T[n,k], {n,12}, {k,n}]//Flatten
-
Sage
def A174346(n,k): return (1/n)*binomial(n,k)*binomial(n,k-1)*( 3^(k-1) if ((n//2)>k-1) else 3^(n-k) ) flatten([[A174346(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Nov 26 2021
Formula
T(n, k) = (binomial(n-1, k-1)*binomial(n, k-1)/k) * ( 3^(k-1) if floor(n/2) >= k, otherwise 3^(n-k) ).
T(n, n-k) = T(n, k).
Extensions
Edited by G. C. Greubel, Nov 26 2021