cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A166229 Expansion of (1-2x-sqrt(1-8x+8x^2))/(2x).

Original entry on oeis.org

1, 2, 8, 36, 176, 912, 4928, 27472, 156864, 912832, 5394176, 32282240, 195264000, 1191825920, 7331457024, 45406194944, 282896763904, 1771868302336, 11150040870912, 70461597988864, 446971590516736, 2845144452292608
Offset: 0

Views

Author

Paul Barry, Oct 09 2009

Keywords

Comments

Binomial transform of A166228. Hankel transform is A166231.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x-Sqrt[1-8*x+8*x^2])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)

Formula

a(n) = 0^n + Sum_{k = 0..n} C(n-1,k-1)*A006318(k). - Paul Barry, Nov 04 2009
G.f.: 1/(1-2x/(1-x-x/(1-2x/(1-x-x/(1-2x/(1-x-x/(1-... (continued fraction). - Paul Barry, Dec 10 2009
Recurrence: (n+1)*a(n) = 4*(2*n-1)*a(n-1) - 8*(n-2)*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ sqrt(1+sqrt(2))*(4+2*sqrt(2))^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
From Peter Bala, May 01 2024: (Start)
O.g.f.: A(x) = x*S(x/(1 - x)), where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. for the large Schröder numbers A006318.
a(n) = A174347(n+1) - A174347(n).
The g.f. satisfies x^2*A(x)^2 - x*(1 - 2*x)*A(x) + x*(1 - x) = 0.
A(x) = (1 - x)/(1 - 2*x - x*(1 - x)/(1 - 2*x - x*(1 - x)/(1 - 2*x - ...))). (End)

A306519 Expansion of 2/(1 + 2*x + sqrt(1 - 4*x*(1 + x))).

Original entry on oeis.org

1, 0, 2, 4, 16, 56, 216, 848, 3424, 14080, 58816, 248832, 1064064, 4591744, 19970432, 87448832, 385226240, 1705979904, 7590632448, 33916934144, 152128126976, 684702330880, 3091429158912, 13997970530304, 63550155145216, 289216809762816, 1319185060069376, 6029646893252608
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 21 2019

Keywords

Comments

Inverse binomial transform of A001003.

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[2/(1 + 2 x + Sqrt[1 - 4 x (1 + x)]), {x, 0, nmax}], x]
    Table[Sum[(-1)^(n - k) Binomial[n, k] Hypergeometric2F1[1 - k, -k, 2, 2], {k, 0, n}], {n, 0, 27}]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A001003(k).
a(n) ~ 2^(n - 1/4) * (1 + sqrt(2))^(n - 1/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 23 2019
D-finite with recurrence: (n+1)*a(n) +3*(-n+1)*a(n-1) +2*(-4*n+5)*a(n-2) +4*(-n+2)*a(n-3)=0. - R. J. Mathar, Jan 25 2020
Showing 1-2 of 2 results.