cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174370 Lesser member p of a twin prime pair (p, p + 2) such that 2p + 3(p + 2) is a perfect square.

Original entry on oeis.org

71, 191, 6551, 9767, 18119, 21647, 27527, 35447, 46271, 79631, 103391, 103967, 121367, 127679, 161639, 207671, 241559, 254927, 264959, 273311, 380327, 421079, 450599, 479879, 592367, 700127, 745751, 949607, 986567, 1011599, 1013399
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Mar 17 2010

Keywords

Comments

2p + 3(p + 2) = 5p + 6.
There are two parametric solutions for natural numbers:
(a) p = 5t^2 + 2t - 1, k = 5t + 1, necessarily for a prime p: t = 2s => p = 20s^2 + 4s - 1, k = 10s + 1.
If s = 3k + 2 => p of (a) is not prime but a multiple of 3.
If the least significant digit of k is 1, solution of (a) for s = (k - 1)/10).
(b) p = 5t^2 + 8t + 2, k = 5t + 4, necessarily for a prime p: t = 2s - 1 => p = 20s^2 - 4s - 1, N = 10s-1.
If s = 3k + 1 => p of (b) is not prime but a multiple of 3.
If the least significant digit of k is 9, solution of (b) for s = (k + 1)/10).

Examples

			71 and 73 are twin primes, 2 * 71 + 3 * 73 = 19^2.
191 and 193 are twin primes, 2 * 191 + 3 * 193 = 31^2.
		

References

  • Leonard E. Dickson, History of the Theory of numbers, vol. 2: Diophantine Analysis, Dover Publications 2005.
  • Richard K. Guy, Unsolved Problems in Number Theory, New York, Springer-Verlag, 1994.
  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Band I, B. G. Teubner, Leipzig u. Berlin, 1909.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10^5]], PrimeQ[# + 2] && IntegerQ[Sqrt[2# + 3(# + 2)]] &] (* Alonso del Arte, Dec 05 2011 *)
    Select[(Range[2251]^2 - 6)/5, And @@ PrimeQ[# + {0, 2}] &] (* Amiram Eldar, Dec 24 2019 *)
    Select[Partition[Prime[Range[80000]],2,1],#[[2]]-#[[1]]==2&&IntegerQ[Sqrt[ 2#[[1]]+ 3#[[2]]]]&][[All,1]] (* Harvey P. Dale, May 12 2022 *)
  • PARI
    forstep(n=1,1e4,[10,8,10,2],if(isprime(p=n^2\5-1)&&isprime(p+2),print1(p", "))) \\ Charles R Greathouse IV, Dec 05 2011