A174370 Lesser member p of a twin prime pair (p, p + 2) such that 2p + 3(p + 2) is a perfect square.
71, 191, 6551, 9767, 18119, 21647, 27527, 35447, 46271, 79631, 103391, 103967, 121367, 127679, 161639, 207671, 241559, 254927, 264959, 273311, 380327, 421079, 450599, 479879, 592367, 700127, 745751, 949607, 986567, 1011599, 1013399
Offset: 1
Keywords
Examples
71 and 73 are twin primes, 2 * 71 + 3 * 73 = 19^2. 191 and 193 are twin primes, 2 * 191 + 3 * 193 = 31^2.
References
- Leonard E. Dickson, History of the Theory of numbers, vol. 2: Diophantine Analysis, Dover Publications 2005.
- Richard K. Guy, Unsolved Problems in Number Theory, New York, Springer-Verlag, 1994.
- Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Band I, B. G. Teubner, Leipzig u. Berlin, 1909.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1 and vol. 2, Leipzig, Berlin, B. G. Teubner, 1909.
Programs
-
Mathematica
Select[Prime[Range[10^5]], PrimeQ[# + 2] && IntegerQ[Sqrt[2# + 3(# + 2)]] &] (* Alonso del Arte, Dec 05 2011 *) Select[(Range[2251]^2 - 6)/5, And @@ PrimeQ[# + {0, 2}] &] (* Amiram Eldar, Dec 24 2019 *) Select[Partition[Prime[Range[80000]],2,1],#[[2]]-#[[1]]==2&&IntegerQ[Sqrt[ 2#[[1]]+ 3#[[2]]]]&][[All,1]] (* Harvey P. Dale, May 12 2022 *)
-
PARI
forstep(n=1,1e4,[10,8,10,2],if(isprime(p=n^2\5-1)&&isprime(p+2),print1(p", "))) \\ Charles R Greathouse IV, Dec 05 2011
Comments