A159623
Triangle read by rows: T(n, k) = n!*q^k/(n-k)! if floor(n/2) > k-1 otherwise n!*q^(n-k)/k!, with q = 1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 12, 4, 1, 1, 5, 20, 20, 5, 1, 1, 6, 30, 120, 30, 6, 1, 1, 7, 42, 210, 210, 42, 7, 1, 1, 8, 56, 336, 1680, 336, 56, 8, 1, 1, 9, 72, 504, 3024, 3024, 504, 72, 9, 1, 1, 10, 90, 720, 5040, 30240, 5040, 720, 90, 10, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 12, 4, 1;
1, 5, 20, 20, 5, 1;
1, 6, 30, 120, 30, 6, 1;
1, 7, 42, 210, 210, 42, 7, 1;
1, 8, 56, 336, 1680, 336, 56, 8, 1;
1, 9, 72, 504, 3024, 3024, 504, 72, 9, 1;
1, 10, 90, 720, 5040, 30240, 5040, 720, 90, 10, 1;
-
T[n_, k_, q_]:= If[Floor[n/2]>=k, n!*q^k/(n-k)!, n!*q^(n-k)/k!];
Table[T[n, k, 1], {n,0,12}, {k,0,n}]//Flatten
-
f=factorial
def T(n,k,q): return f(n)*q^k/f(n-k) if ((n//2)>k-1) else f(n)*q^(n-k)/f(k)
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 28 2021
A174377
Triangle T(n, k) = n!*q^k/(n-k)! if floor(n/2) > k-1 otherwise n!*q^(n-k)/k!, with q = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 9, 9, 1, 1, 12, 108, 12, 1, 1, 15, 180, 180, 15, 1, 1, 18, 270, 3240, 270, 18, 1, 1, 21, 378, 5670, 5670, 378, 21, 1, 1, 24, 504, 9072, 136080, 9072, 504, 24, 1, 1, 27, 648, 13608, 244944, 244944, 13608, 648, 27, 1, 1, 30, 810, 19440, 408240, 7348320, 408240, 19440, 810, 30, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 9, 9, 1;
1, 12, 108, 12, 1;
1, 15, 180, 180, 15, 1;
1, 18, 270, 3240, 270, 18, 1;
1, 21, 378, 5670, 5670, 378, 21, 1;
1, 24, 504, 9072, 136080, 9072, 504, 24, 1;
1, 27, 648, 13608, 244944, 244944, 13608, 648, 27, 1;
1, 30, 810, 19440, 408240, 7348320, 408240, 19440, 810, 30, 1;
-
T[n_, k_, q_]:= If[Floor[n/2]>=k, n!*q^k/(n-k)!, n!*q^(n-k)/k!];
Table[T[n, k, 3], {n,0,12}, {k,0,n}]//Flatten
-
f=factorial
def T(n,k,q): return f(n)*q^k/f(n-k) if ((n//2)>k-1) else f(n)*q^(n-k)/f(k)
flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 28 2021
A174378
Triangle T(n, k) = n!*q^k/(n-k)! if floor(n/2) > k-1 otherwise n!*q^(n-k)/k!, with q = 4, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 12, 12, 1, 1, 16, 192, 16, 1, 1, 20, 320, 320, 20, 1, 1, 24, 480, 7680, 480, 24, 1, 1, 28, 672, 13440, 13440, 672, 28, 1, 1, 32, 896, 21504, 430080, 21504, 896, 32, 1, 1, 36, 1152, 32256, 774144, 774144, 32256, 1152, 36, 1, 1, 40, 1440, 46080, 1290240, 30965760, 1290240, 46080, 1440, 40, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 12, 12, 1;
1, 16, 192, 16, 1;
1, 20, 320, 320, 20, 1;
1, 24, 480, 7680, 480, 24, 1;
1, 28, 672, 13440, 13440, 672, 28, 1;
1, 32, 896, 21504, 430080, 21504, 896, 32, 1;
1, 36, 1152, 32256, 774144, 774144, 32256, 1152, 36, 1;
1, 40, 1440, 46080, 1290240, 30965760, 1290240, 46080, 1440, 40, 1;
-
T[n_, k_, q_]:= If[Floor[n/2]>=k, n!*q^k/(n-k)!, n!*q^(n-k)/k!];
Table[T[n, k, 4], {n,0,12}, {k,0,n}]//Flatten
-
f=factorial
def T(n,k,q): return f(n)*q^k/f(n-k) if ((n//2)>k-1) else f(n)*q^(n-k)/f(k)
flatten([[T(n,k,4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 28 2021
Showing 1-3 of 3 results.
Comments