A174377 Triangle T(n, k) = n!*q^k/(n-k)! if floor(n/2) > k-1 otherwise n!*q^(n-k)/k!, with q = 3, read by rows.
1, 1, 1, 1, 6, 1, 1, 9, 9, 1, 1, 12, 108, 12, 1, 1, 15, 180, 180, 15, 1, 1, 18, 270, 3240, 270, 18, 1, 1, 21, 378, 5670, 5670, 378, 21, 1, 1, 24, 504, 9072, 136080, 9072, 504, 24, 1, 1, 27, 648, 13608, 244944, 244944, 13608, 648, 27, 1, 1, 30, 810, 19440, 408240, 7348320, 408240, 19440, 810, 30, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 6, 1; 1, 9, 9, 1; 1, 12, 108, 12, 1; 1, 15, 180, 180, 15, 1; 1, 18, 270, 3240, 270, 18, 1; 1, 21, 378, 5670, 5670, 378, 21, 1; 1, 24, 504, 9072, 136080, 9072, 504, 24, 1; 1, 27, 648, 13608, 244944, 244944, 13608, 648, 27, 1; 1, 30, 810, 19440, 408240, 7348320, 408240, 19440, 810, 30, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_, q_]:= If[Floor[n/2]>=k, n!*q^k/(n-k)!, n!*q^(n-k)/k!]; Table[T[n, k, 3], {n,0,12}, {k,0,n}]//Flatten
-
Sage
f=factorial def T(n,k,q): return f(n)*q^k/f(n-k) if ((n//2)>k-1) else f(n)*q^(n-k)/f(k) flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 28 2021
Formula
T(n, k) = n!*q^k/(n-k)! if floor(n/2) > k-1 otherwise n!*q^(n-k)/k!, with q = 3.
T(n, n-k) = T(n, k).
T(2*n, n) = A221954(n+1). - G. C. Greubel, Nov 28 2021
Extensions
Edited by G. C. Greubel, Nov 28 2021
Comments