A174379 a(n) is the largest prime factor of (n-1)^n - n^(n-1).
17, 19, 167, 162287, 159463, 354751, 2486784401, 12589253, 71549927, 83695120256591, 556123, 10902870290089, 25793, 362561, 26757560905578361, 6015993258685545623, 55044966589, 1182622403647894934149, 9973660056412561, 38783069052902219, 4576344458074395243073
Offset: 4
Keywords
Examples
19 is a term because 4^5 - 5^4 = 399 = 19 * 21. - _Bernard Schott_, Jan 14 2019
Links
- Vincenzo Librandi, Table of n, a(n) for n = 4..50
Crossrefs
Cf. A007925.
Programs
-
Magma
[Maximum(PrimeDivisors((n-1)^n - n^(n-1))): n in [4..25]]; // Vincenzo Librandi, Jan 14 2019
-
Mathematica
Table[FactorInteger[(n - 1)^n - n^(n - 1)][[-1, 1]], {n, 4, 20}] (* Vincenzo Librandi, Jan 14 2019 *)
-
PARI
a(n) = vecmax(factor((n-1)^n - n^(n-1))[,1]); for (n=4, 30, print1(a(n), ", ")) \\ Michel Marcus, Jan 14 2019
Extensions
a(4) corrected, a(22)-a(24) added, and other edits by Jon E. Schoenfield, Jan 13 2019
Comments