cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174449 Triangle T(n, k, q) = n!*(n+1)!*q^k/((n-k)!(n-k+1)!) if floor(n/2) > k-1, otherwise n!*(n+1)!*q^(n-k)/(k!*(k+1)!) for q = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 12, 12, 1, 1, 20, 240, 20, 1, 1, 30, 600, 600, 30, 1, 1, 42, 1260, 25200, 1260, 42, 1, 1, 56, 2352, 70560, 70560, 2352, 56, 1, 1, 72, 4032, 169344, 5080320, 169344, 4032, 72, 1, 1, 90, 6480, 362880, 15240960, 15240960, 362880, 6480, 90, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 20 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,   1;
  1,   6,    1;
  1,  12,   12,      1;
  1,  20,  240,     20,        1;
  1,  30,  600,    600,       30,          1;
  1,  42, 1260,  25200,     1260,         42,        1;
  1,  56, 2352,  70560,    70560,       2352,       56,      1;
  1,  72, 4032, 169344,  5080320,     169344,     4032,     72,    1;
  1,  90, 6480, 362880, 15240960,   15240960,   362880,   6480,   90,   1;
  1, 110, 9900, 712800, 39916800, 1676505600, 39916800, 712800, 9900, 110,  1;
		

Crossrefs

Cf. this sequence (q=1), A174450 (q=2), A174451 (q=3).
Cf. A052510.

Programs

  • Magma
    F:= Factorial; // T = A174449
    T:= func< n,k,q | Floor(n/2) gt k-1 select F(n)*F(n+1)*q^k/(F(n-k)*F(n-k+1)) else F(n)*F(n+1)*q^(n-k)/(F(k)*F(k+1)) >;
    [T(n,k,1): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 29 2021
    
  • Mathematica
    T[n_, k_, q_]:= If[Floor[n/2]>k-1, n!*(n+1)!*q^k/((n-k)!*(n-k+1)!), n!*(n+1)!*q^(n-k)/(k!*(k+1)!)];
    Table[T[n, k, 1], {n,0,12}, {k,0,n}]//Flatten
  • Sage
    f=factorial
    def A174449(n,k,q):
        if ((n//2)>k-1): return f(n)*f(n+1)*q^k/(f(n-k)*f(n-k+1))
        else: return f(n)*f(n+1)*q^(n-k)/(f(k)*f(k+1))
    flatten([[A174449(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 29 2021

Formula

T(n, k, q) = n!*(n+1)!*q^k/((n-k)!(n-k+1)!) if floor(n/2) > k-1, otherwise n!*(n+1)!*q^(n-k)/(k!*(k+1)!) for q = 1.
T(n, n-k, q) = T(n, k, q).
From G. C. Greubel, Nov 29 2021: (Start)
T(2*n, n, 1) = A052510(n+1).
T(2*n, n, q) = q^n*(2*n+1)!*Catalan(n) for q = 1.
T(n, k, q) = binomial(n, k)*binomial(n+1, k+1) * ( k!*(k+1)!*q^k/(n-k+1) if (floor(n/2) >= k), otherwise ((n-k)!)^2*q^(n-k) ), for q = 1. (End)

Extensions

Edited by G. C. Greubel, Nov 29 2021