A174451 Triangle T(n, k, q) = n!*(n+1)!*q^k/((n-k)!(n-k+1)!) if floor(n/2) > k-1, otherwise n!*(n+1)!*q^(n-k)/(k!*(k+1)!) for q = 3, read by rows.
1, 1, 1, 1, 18, 1, 1, 36, 36, 1, 1, 60, 2160, 60, 1, 1, 90, 5400, 5400, 90, 1, 1, 126, 11340, 680400, 11340, 126, 1, 1, 168, 21168, 1905120, 1905120, 21168, 168, 1, 1, 216, 36288, 4572288, 411505920, 4572288, 36288, 216, 1, 1, 270, 58320, 9797760, 1234517760, 1234517760, 9797760, 58320, 270, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 18, 1; 1, 36, 36, 1; 1, 60, 2160, 60, 1; 1, 90, 5400, 5400, 90, 1; 1, 126, 11340, 680400, 11340, 126, 1; 1, 168, 21168, 1905120, 1905120, 21168, 168, 1; 1, 216, 36288, 4572288, 411505920, 4572288, 36288, 216, 1; 1, 270, 58320, 9797760, 1234517760, 1234517760, 9797760, 58320, 270, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
F:= Factorial; // T = A174451 T:= func< n,k,q | Floor(n/2) gt k-1 select F(n)*F(n+1)*q^k/(F(n-k)*F(n-k+1)) else F(n)*F(n+1)*q^(n-k)/(F(k)*F(k+1)) >; [T(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 29 2021
-
Mathematica
T[n_, k_, q_]:= If[Floor[n/2]>k-1, n!*(n+1)!*q^k/((n-k)!*(n-k+1)!), n!*(n+1)!*q^(n-k)/(k!*(k+1)!)]; Table[T[n, k, 3], {n,0,12}, {k,0,n}]//Flatten
-
Sage
f=factorial def A174451(n,k,q): if ((n//2)>k-1): return f(n)*f(n+1)*q^k/(f(n-k)*f(n-k+1)) else: return f(n)*f(n+1)*q^(n-k)/(f(k)*f(k+1)) flatten([[A174451(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 29 2021
Formula
T(n, k, q) = n!*(n+1)!*q^k/((n-k)!(n-k+1)!) if floor(n/2) > k-1, otherwise n!*(n+1)!*q^(n-k)/(k!*(k+1)!) for q = 3.
T(n, n-k, q) = T(n, k, q).
From G. C. Greubel, Nov 29 2021: (Start)
T(2*n, n, q) = q^n*(2*n+1)!*Catalan(n) for q = 3.
T(n, k, q) = binomial(n, k)*binomial(n+1, k+1) * ( k!*(k+1)!*q^k/(n-k+1) if (floor(n/2) >= k), otherwise ((n-k)!)^2*q^(n-k) ), for q = 3. (End)
Extensions
Edited by G. C. Greubel, Nov 29 2021