cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174455 Number of partitions where the number of 1's and 2's are equal.

Original entry on oeis.org

1, 0, 0, 2, 1, 1, 4, 3, 4, 8, 8, 10, 17, 18, 23, 34, 39, 48, 67, 78, 97, 127, 151, 185, 237, 281, 343, 428, 511, 616, 759, 902, 1084, 1315, 1562, 1863, 2242, 2649, 3147, 3752, 4424, 5222, 6190, 7266, 8545, 10062, 11776, 13782, 16157, 18832, 21964, 25622, 29777, 34589, 40200, 46556, 53912
Offset: 0

Views

Author

Joerg Arndt, Nov 28 2010

Keywords

Comments

From Omar E. Pol, Jan 19 2013: (Start)
Column 3 of triangle A220504.
With offset 3, a(n) is also the number of appearances of 3 as the smallest part in all partitions of n.
Also consider the sequence formed by [0, 0] together with this sequence, with offset 1, then it appears that A027336(n) = Sum_{j=1..3} a(n+j), n >= 0.
(End)

Examples

			a(8)=9, there are 8 such partitions of 9, they are
  #1:    9 =  3* 1 + 3* 2 + 0    + 0    + 0    + 0    + 0    + 0    + 0
  #2:    9 =  2* 1 + 2* 2 + 1* 3 + 0    + 0    + 0    + 0    + 0    + 0
  #3:    9 =  1* 1 + 1* 2 + 2* 3 + 0    + 0    + 0    + 0    + 0    + 0
  #4:    9 =  0    + 0    + 3* 3 + 0    + 0    + 0    + 0    + 0    + 0
  #5:    9 =  0    + 0    + 0    + 1* 4 + 1* 5 + 0    + 0    + 0    + 0
  #6:    9 =  1* 1 + 1* 2 + 0    + 0    + 0    + 1* 6 + 0    + 0    + 0
  #7:    9 =  0    + 0    + 1* 3 + 0    + 0    + 1* 6 + 0    + 0    + 0
  #8:    9 =  0    + 0    + 0    + 0    + 0    + 0    + 0    + 0    + 1* 9
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local j, r; if n=0 or i<1 then 0
          else `if`(i=3 and irem(n, 3, 'r')=0, r, 0); for j from 0
          to n/i do %+b(n-i*j, i-1) od; % fi
        end:
    a:= n-> b(n+3, n+3):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 20 2013
  • Mathematica
    (* See A240056. - Clark Kimberling, Mar 31 2014 *)
    m = 66; gf = 1/((1-x^3)*Product[1-x^n, {n, 3, m}]) + O[x]^m; CoefficientList[gf, x] (* Jean-François Alcover, Jul 02 2015, after Joerg Arndt *)
  • PARI
    N=66;  x='x+O('x^N);
    gf=1/( (1-x^3) * prod(n=3,N, 1-x^n) );
    Vec(gf)
    /* Joerg Arndt, Jul 07 2012 */

Formula

G.f.: 1/( (1-x^3) * Product_{n>=3} (1-x^n) ). - Joerg Arndt, Jul 07 2012
a(n) = A182713(n+2) - A182713(n) = A240056(n+1) - A240056(n) for n >= 0. - Clark Kimberling, Mar 31 2014
a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (9 * 2^(3/2) * n^(3/2)). - Vaclav Kotesovec, Jan 15 2022