A174455 Number of partitions where the number of 1's and 2's are equal.
1, 0, 0, 2, 1, 1, 4, 3, 4, 8, 8, 10, 17, 18, 23, 34, 39, 48, 67, 78, 97, 127, 151, 185, 237, 281, 343, 428, 511, 616, 759, 902, 1084, 1315, 1562, 1863, 2242, 2649, 3147, 3752, 4424, 5222, 6190, 7266, 8545, 10062, 11776, 13782, 16157, 18832, 21964, 25622, 29777, 34589, 40200, 46556, 53912
Offset: 0
Keywords
Examples
a(8)=9, there are 8 such partitions of 9, they are #1: 9 = 3* 1 + 3* 2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 #2: 9 = 2* 1 + 2* 2 + 1* 3 + 0 + 0 + 0 + 0 + 0 + 0 #3: 9 = 1* 1 + 1* 2 + 2* 3 + 0 + 0 + 0 + 0 + 0 + 0 #4: 9 = 0 + 0 + 3* 3 + 0 + 0 + 0 + 0 + 0 + 0 #5: 9 = 0 + 0 + 0 + 1* 4 + 1* 5 + 0 + 0 + 0 + 0 #6: 9 = 1* 1 + 1* 2 + 0 + 0 + 0 + 1* 6 + 0 + 0 + 0 #7: 9 = 0 + 0 + 1* 3 + 0 + 0 + 1* 6 + 0 + 0 + 0 #8: 9 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1* 9
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
Programs
-
Maple
b:= proc(n, i) option remember; local j, r; if n=0 or i<1 then 0 else `if`(i=3 and irem(n, 3, 'r')=0, r, 0); for j from 0 to n/i do %+b(n-i*j, i-1) od; % fi end: a:= n-> b(n+3, n+3): seq(a(n), n=0..60); # Alois P. Heinz, Jan 20 2013
-
Mathematica
(* See A240056. - Clark Kimberling, Mar 31 2014 *) m = 66; gf = 1/((1-x^3)*Product[1-x^n, {n, 3, m}]) + O[x]^m; CoefficientList[gf, x] (* Jean-François Alcover, Jul 02 2015, after Joerg Arndt *)
-
PARI
N=66; x='x+O('x^N); gf=1/( (1-x^3) * prod(n=3,N, 1-x^n) ); Vec(gf) /* Joerg Arndt, Jul 07 2012 */
Formula
G.f.: 1/( (1-x^3) * Product_{n>=3} (1-x^n) ). - Joerg Arndt, Jul 07 2012
a(n) = A182713(n+2) - A182713(n) = A240056(n+1) - A240056(n) for n >= 0. - Clark Kimberling, Mar 31 2014
a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (9 * 2^(3/2) * n^(3/2)). - Vaclav Kotesovec, Jan 15 2022
Comments