cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A110448 G.f.: A(x) = exp( Sum_{n>=1} A056045(n)/n*x^n ), where A056045(n) = Sum_{d|n} binomial(n,d).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 18, 23, 49, 73, 145, 194, 474, 611, 1331, 2027, 4393, 5919, 14736, 19415, 46487, 68504, 156618, 212055, 560380, 739165, 1833012, 2657837, 6513367, 8743208, 23649777, 31140300, 81276046, 114962333, 293600318, 391926154
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2005, Nov 10 2007

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 18*x^6 +...
where A(x) = exp( Sum_{n>=1} A056045(n)/n*x^n ), or
A(x) = exp(x + 3/2*x^2 + 4/3*x^3 + 11/4*x^4 + 6/5*x^5 +...).
The g.f. can also be expressed as the product:
A(x) = 1/(1-x)*G000108(x^2)*G001764(x^3)*G002293(x^4)*G002294(x^5)*...
where the functions are g.f.s of well-known sequences:
G000108(x) = 1 + x*G000108(x)^2 = g.f. of A000108 ;
G001764(x) = 1 + x*G001764(x)^3 = g.f. of A001764 ;
G002293(x) = 1 + x*G002293(x)^4 = g.f. of A002293 ;
G002294(x) = 1 + x*G002294(x)^5 = g.f. of A002294 ; etc.
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(x*Ser(vector(n,m, sumdiv(m,d,binomial(m,d))/m))+x*O(x^n)),n)}
    
  • PARI
    {a(n)=polcoeff(prod(m=1,n,1/x*serreverse(x/(1+x^m +x*O(x^n)))),n)}

Formula

G.f.: A(x) = Product_{n>=1} (1/x)*Series_Reversion( x/(1 + x^n) ); equivalently, G.f.: A(x) = Product_{n>=1} G(x^n,n) where G(x,n) = 1 + x*G(x,n)^n.
a(n) ~ c * 2^n / n^(3/2), where c = 2.8176325363130737043447... if n is even and c = 1.784372019603712867208... if n is odd. - Vaclav Kotesovec, Jan 15 2019

A174462 a(n) = Sum_{d|n} binomial(n,d)^2.

Original entry on oeis.org

1, 5, 10, 53, 26, 662, 50, 5749, 7138, 65630, 122, 1151702, 170, 11787102, 9225260, 168963957, 290, 2709216086, 362, 34398664078, 13522807742, 497634360470, 530, 7871610432598, 2822797526, 108172480466302, 21966337136980
Offset: 1

Views

Author

Paul D. Hanna, Apr 04 2010

Keywords

Comments

Analog to the central binomial coefficients: A000984(n) = Sum_{k=0..n} C(n,k)^2.

Crossrefs

Programs

  • PARI
    {a(n)=sumdiv(n,d,binomial(n,d)^2)}

Formula

Logarithmic derivative of A174461.
Showing 1-2 of 2 results.