cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A174461 G.f.: exp( Sum_{n>=1} A174462(n)*x^n/n ) where A174462(n) = Sum_{d|n} C(n,d)^2.

Original entry on oeis.org

1, 1, 3, 6, 21, 32, 174, 236, 1310, 2609, 12579, 18150, 150980, 198821, 1471346, 2645433, 17956158, 24534384, 234506155, 304507520, 2773986000, 4315363549, 36311714888, 47769153478, 500399410005, 637747787407, 6468558255893, 9142971548460, 88936892205131
Offset: 0

Views

Author

Paul D. Hanna, Apr 04 2010

Keywords

Comments

Compare to the g.f. G(x) of the Catalan numbers:
G(x)^2 = exp( Sum_{n>=1} A000984(n)*x^n/n ) where A000984(n) = Sum_{k=0..n} C(n,k)^2.

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sumdiv(m,d,binomial(m,d)^2))+x*O(x^n)),n)}

A056045 a(n) = Sum_{d|n} binomial(n,d).

Original entry on oeis.org

1, 3, 4, 11, 6, 42, 8, 107, 94, 308, 12, 1718, 14, 3538, 3474, 14827, 18, 68172, 20, 205316, 117632, 705686, 24, 3587174, 53156, 10400952, 4689778, 41321522, 30, 185903342, 32, 611635179, 193542210, 2333606816, 7049188, 10422970784, 38
Offset: 1

Views

Author

Labos Elemer, Jul 25 2000

Keywords

Examples

			A(x) = log(1/(1-x) * G(x^2,2) * G(x^3,3) * G(x^4,4) * ...)
where the functions G(x,n) are g.f.s of well-known sequences:
G(x,2) = g.f. of A000108 = 1 + x*G(x,2)^2;
G(x,3) = g.f. of A001764 = 1 + x*G(x,3)^3;
G(x,4) = g.f. of A002293 = 1 + x*G(x,4)^4; etc.
		

Crossrefs

Cf. A110448 (exp(A(x))); A000108 (Catalan numbers), A001764, A002293, A174462.
Cf. A000010 (comments on Dirichlet sum formulas).
Cf. A308943 (similar, with Product).

Programs

  • Haskell
    a056045 n = sum $ map (a007318 n) $ a027750_row n
    -- Reinhard Zumkeller, Aug 13 2013
    
  • Mathematica
    f[n_] := Sum[ Binomial[n, d], {d, Divisors@ n}]; Array[f, 37] (* Robert G. Wilson v, Apr 23 2005 *)
    Total[Binomial[#,Divisors[#]]]&/@Range[40] (* Harvey P. Dale, Dec 08 2018 *)
  • PARI
    {a(n)=n*polcoeff(sum(m=1,n,log(1/x*serreverse(x/(1+x^m +x*O(x^n))))),n)} /* Paul D. Hanna, Nov 10 2007 */
    
  • PARI
    {a(n)=sumdiv(n,d,binomial(n,d))} /* Paul D. Hanna, Nov 10 2007 */
    
  • Python
    from math import comb
    from sympy import divisors
    def A056045(n): return sum(comb(n,d) for d in divisors(n,generator=True)) # Chai Wah Wu, Jul 22 2024

Formula

L.g.f.: A(x) = Sum_{n>=1} log( G(x^n,n) ) where G(x,n) = 1 + x*G(x,n)^n. L.g.f. A(x) satisfies: exp(A(x)) = g.f. of A110448. - Paul D. Hanna, Nov 10 2007
a(n) = Sum_{k=1..A000005(n)} A007318(n, A027750(k)). - Reinhard Zumkeller, Aug 13 2013
a(n) = Sum_{k=1..n} binomial(n,gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} binomial(n,n/gcd(n,k))/phi(n/gcd(n,k)) where phi = A000010. - Richard L. Ollerton, Nov 08 2021
a(n) = n+1 iff n is prime. - Bernard Schott, Nov 30 2021

A306842 a(n) = Sum_{d|n} binomial(n,d)*binomial(n,n/d).

Original entry on oeis.org

1, 4, 6, 44, 10, 612, 14, 3936, 7074, 22700, 22, 339792, 26, 624652, 2732760, 6401232, 34, 45174204, 38, 220441080, 309304842, 325909628, 46, 7330314960, 2822796950, 6760390052, 27417926304, 78814587656, 58, 548150764560, 62, 1352747882944, 2111872688706
Offset: 1

Views

Author

Seiichi Manyama, Mar 12 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[n, #] * Binomial[n, n/#] &]; Array[a, 30] (* Amiram Eldar, Jun 13 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, binomial(n, d)*binomial(n, n/d))}

Formula

If p is prime, a(p) = 2*p.

A306843 a(n) = Sum_{d|n} binomial(n,d)^3.

Original entry on oeis.org

1, 9, 28, 281, 126, 11592, 344, 365465, 593434, 16095134, 1332, 921113624, 2198, 40424993884, 27175280778, 2137777203097, 4914, 121331143444050, 6860, 6310445825215406, 1572228697798262, 351047164202718608, 12168, 20174300460344963864, 149975199312626
Offset: 1

Views

Author

Seiichi Manyama, Mar 12 2019

Keywords

Crossrefs

Sum_{d|n} binomial(n,d)^b: A000005 (b=0), A056045 (b=1), A174462 (b=2), this sequence (b=3).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[n, #]^3 &]; Array[a, 25] (* Amiram Eldar, Jun 13 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, binomial(n, d)^3)}

Formula

If p is prime, a(p) = A001093(p).
Showing 1-4 of 4 results.