A060173
Number of orbits of length n under a map whose periodic points are counted by A056045.
Original entry on oeis.org
1, 1, 1, 2, 1, 6, 1, 12, 10, 30, 1, 139, 1, 252, 231, 920, 1, 3780, 1, 10250, 5601, 32076, 1, 149390, 2126, 400036, 173692, 1475642, 1, 6196651, 1, 19113136, 5864915, 68635494, 201405, 289525026, 1, 930138540, 208267554, 3469290971, 1, 14075005210, 1, 47994721225, 7683440470
Offset: 1
a(7) = 1 since the map whose periodic points are counted by A056045 has 1 fixed point and 8 points of period 7, hence 1 orbits of length 7.
-
a056045(n) = sumdiv(n, d, binomial(n, d));
a(n) = (1/n)*sumdiv(n, d, moebius(d)*a056045(n/d)); \\ Michel Marcus, Sep 11 2017
A110448
G.f.: A(x) = exp( Sum_{n>=1} A056045(n)/n*x^n ), where A056045(n) = Sum_{d|n} binomial(n,d).
Original entry on oeis.org
1, 1, 2, 3, 6, 8, 18, 23, 49, 73, 145, 194, 474, 611, 1331, 2027, 4393, 5919, 14736, 19415, 46487, 68504, 156618, 212055, 560380, 739165, 1833012, 2657837, 6513367, 8743208, 23649777, 31140300, 81276046, 114962333, 293600318, 391926154
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 18*x^6 +...
where A(x) = exp( Sum_{n>=1} A056045(n)/n*x^n ), or
A(x) = exp(x + 3/2*x^2 + 4/3*x^3 + 11/4*x^4 + 6/5*x^5 +...).
The g.f. can also be expressed as the product:
A(x) = 1/(1-x)*G000108(x^2)*G001764(x^3)*G002293(x^4)*G002294(x^5)*...
where the functions are g.f.s of well-known sequences:
G000108(x) = 1 + x*G000108(x)^2 = g.f. of A000108 ;
G001764(x) = 1 + x*G001764(x)^3 = g.f. of A001764 ;
G002293(x) = 1 + x*G002293(x)^4 = g.f. of A002293 ;
G002294(x) = 1 + x*G002294(x)^5 = g.f. of A002294 ; etc.
-
{a(n)=polcoeff(exp(x*Ser(vector(n,m, sumdiv(m,d,binomial(m,d))/m))+x*O(x^n)),n)}
-
{a(n)=polcoeff(prod(m=1,n,1/x*serreverse(x/(1+x^m +x*O(x^n)))),n)}
Original entry on oeis.org
1, 1, 4, 5, 26, 22, 120, 149, 418, 716, 2036, 2378, 8178, 12846, 29294, 50709, 131054, 193972, 524268, 843260, 1979520, 3488618, 8388584, 13190042, 33501276, 56707912, 129527950, 227113934, 536870882, 887838482, 2147483616, 3683332117, 8396392382, 14846262368, 34352689180
Offset: 1
-
a[n_] := 2^n - DivisorSum[n, Binomial[n, #] &]; Array[a, 40] (* Amiram Eldar, Aug 18 2024 *)
-
a(n) = 2^n - sumdiv(n, d, binomial(n, d)); \\ Michel Marcus, Aug 25 2019
A308037
a(n) = Sum_{d|n} Stirling2(n,d).
Original entry on oeis.org
1, 2, 2, 9, 2, 123, 2, 1830, 3027, 43038, 2, 2023728, 2, 49337473, 213142023, 2313595723, 2, 216927216877, 2, 6712023695345, 82312699558575, 366282502967439, 2, 113350450913387211, 2436684974110753, 1850568574287104493, 106563274551407600878, 231678790379913209098, 2
Offset: 1
-
a:= n-> add(Stirling2(n, d), d=numtheory[divisors](n)):
seq(a(n), n=1..30); # Alois P. Heinz, May 10 2019
-
a[n_] := a[n] = Sum[StirlingS2[n, d], {d, Divisors[n]}]; Table[a[n], {n, 1, 29}]
-
a(n) = sumdiv(n, d, stirling(n, d, 2)); \\ Michel Marcus, May 10 2019
A271654
a(n) = Sum_{k|n} binomial(n-1,k-1).
Original entry on oeis.org
1, 2, 2, 5, 2, 17, 2, 44, 30, 137, 2, 695, 2, 1731, 1094, 6907, 2, 30653, 2, 97244, 38952, 352739, 2, 1632933, 10628, 5200327, 1562602, 20357264, 2, 87716708, 2, 303174298, 64512738, 1166803145, 1391282, 4978661179, 2, 17672631939, 2707475853, 69150651910, 2, 286754260229, 2, 1053966829029, 115133177854, 4116715363847, 2, 16892899722499, 12271514, 63207357886437
Offset: 1
From _Gus Wiseman_, Sep 28 2022: (Start)
The a(1) = 1 through a(6) = 17 compositions with integer mean:
(1) (2) (3) (4) (5) (6)
(1,1) (1,1,1) (1,3) (1,1,1,1,1) (1,5)
(2,2) (2,4)
(3,1) (3,3)
(1,1,1,1) (4,2)
(5,1)
(1,1,4)
(1,2,3)
(1,3,2)
(1,4,1)
(2,1,3)
(2,2,2)
(2,3,1)
(3,1,2)
(3,2,1)
(4,1,1)
(1,1,1,1,1,1)
(End)
These compositions are ranked by
A096199.
-
a:= n-> add(binomial(n-1, d-1), d=numtheory[divisors](n)):
seq(a(n), n=1..50); # Alois P. Heinz, Dec 03 2023
-
Table[Length[Join @@ Permutations/@Select[IntegerPartitions[n],IntegerQ[Mean[#]]&]],{n,15}] (* Gus Wiseman, Sep 28 2022 *)
-
a(n)=sumdiv(n,k,binomial(n-1,k-1))
A056188
a(1) = 1; for n>1, sum of binomial(n,k) as k runs over RRS(n), the reduced residue system of n.
Original entry on oeis.org
1, 2, 6, 8, 30, 12, 126, 128, 342, 260, 2046, 1608, 8190, 4760, 15840, 32768, 131070, 80820, 524286, 493280, 1165542, 1391720, 8388606, 5769552, 26910650, 23153832, 89478486, 131849648, 536870910, 352845960, 2147483646, 2147483648
Offset: 1
For n=10, RRS[10]={1,3,7,9}, the corresponding coefficients are {10,120,120,10}, so the sum a(10)=260.
-
A056188 := proc(n)
a := 0 ;
for k from 1 to n do
if igcd(k,n) = 1 then
a := a+binomial(n,k);
end if ;
end do:
a ;
end proc: # R. J. Mathar, Sep 02 2017
-
f[n_] := Plus @@ Binomial[n, Select[ Range[n], GCD[n, # ] == 1 &]]; Table[ f[n], {n, 33}] (* Robert G. Wilson v, Nov 04 2004 *)
-
a(n) = if (n==1, 1, sum(k=0, n, if (gcd(n,k) == 1, binomial(n,k)))); \\ Michel Marcus, Mar 22 2020
A327238
Expansion of Sum_{k>=1} ((1 + k * x^k)^k - 1).
Original entry on oeis.org
1, 4, 9, 20, 25, 63, 49, 160, 108, 350, 121, 940, 169, 1225, 1475, 2304, 289, 7560, 361, 8025, 12446, 7139, 529, 58192, 3750, 13858, 61965, 102655, 841, 191181, 961, 318464, 220704, 40460, 354172, 1304370, 1369, 63175, 629863, 4012608, 1681, 1916733, 1849
Offset: 1
-
nmax = 43; CoefficientList[Series[Sum[((1 + k x^k)^k - 1), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[DivisorSum[n, (n/#)^# Binomial[n/#, #] &], {n, 1, 43}]
-
a(n)={sumdiv(n, d, (n/d)^d * binomial(n/d,d))} \\ Andrew Howroyd, Sep 14 2019
A051054
a(n) = Sum_{k=1..n} C(n, floor(n/k)).
Original entry on oeis.org
0, 1, 3, 7, 15, 26, 54, 85, 159, 292, 513, 804, 1844, 2965, 5169, 10679, 20107, 34120, 72498, 126028, 245966, 498852, 913872, 1644570, 3600916, 6530881, 12280999, 25149973, 48355605, 89310576, 187976827, 348475899, 677303827
Offset: 0
-
A051054 := proc(n) local k; add(binomial(n,floor(n/k)), k=1..n); end; [seq(A051054(n), n=0..40)];
-
Table[Sum[Binomial[n, Floor[n/i]], {i, n}], {n, 0, 40}] (* Wesley Ivan Hurt, May 16 2016 *)
-
a(n) = sum(k=1, n, binomial(n, n\k)); \\ Seiichi Manyama, Jan 06 2022
A174462
a(n) = Sum_{d|n} binomial(n,d)^2.
Original entry on oeis.org
1, 5, 10, 53, 26, 662, 50, 5749, 7138, 65630, 122, 1151702, 170, 11787102, 9225260, 168963957, 290, 2709216086, 362, 34398664078, 13522807742, 497634360470, 530, 7871610432598, 2822797526, 108172480466302, 21966337136980
Offset: 1
A105862
a(n) = n * Sum_{d|n} binomial(n,d)/gcd(n,d).
Original entry on oeis.org
1, 5, 10, 29, 26, 122, 50, 317, 334, 830, 122, 4754, 170, 7698, 11510, 34237, 290, 159530, 362, 458054, 358592, 1413890, 530, 8236946, 266276, 20806102, 14087530, 85118762, 842, 404242022, 962, 1244530621, 580671266, 4667223134, 35896250
Offset: 1
L.g.f.: A(x) = x + 5/2*x^2 + 10/3*x^3 + 29/4*x^4 + 26/5*x^5 + 61/3*x^6 +...
L.g.f.: A(x) = LOG[1/(1-x) * G(x^2,2)^2 * G(x^3,3)^3 * G(x^4,4)^4 *...]
where the functions G(x,n) are g.f.s of well-known sequences:
G(x,2) = g.f. of A000108 = 1 + x*G(x,2)^2;
G(x,3) = g.f. of A001764 = 1 + x*G(x,3)^3;
G(x,4) = g.f. of A002293 = 1 + x*G(x,4)^4 ; etc.
Exponentiation of l.g.f. A(x) is expressed by a product that begins:
exp(A(x)) = [1 + x + x^2 + x^3 +...] * [1 + 2*x^2 + 5*x^4 + 14*x^6 +...] * [1 + 3*x^3 + 12*x^6 + 55*x^9 +...] * [1 + 4*x^4 + 22*x^8 + 140*x^12 +...] * ...
-
f[n_] := Block[{d = Divisors[n]}, n*Plus @@ (Binomial[n, d]/GCD[n, d])]; Table[ f[n], {n, 35}]
-
a(n)=n*polcoeff(sum(m=1,n,m*log(1/x*serreverse(x/(1+x^m +x*O(x^n))))),n)
-
a(n)=if(n<1,0,n*sumdiv(n,d,binomial(n,d)/gcd(n,d))) \\ Paul D. Hanna, Nov 11 2007
Showing 1-10 of 27 results.
Comments