cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A060173 Number of orbits of length n under a map whose periodic points are counted by A056045.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 12, 10, 30, 1, 139, 1, 252, 231, 920, 1, 3780, 1, 10250, 5601, 32076, 1, 149390, 2126, 400036, 173692, 1475642, 1, 6196651, 1, 19113136, 5864915, 68635494, 201405, 289525026, 1, 930138540, 208267554, 3469290971, 1, 14075005210, 1, 47994721225, 7683440470
Offset: 1

Views

Author

Thomas Ward, Mar 13 2001

Keywords

Comments

The sequence A056045 records the number of points of period n under a map. The number of orbits of length n for this map gives the sequence above.

Examples

			a(7) = 1 since the map whose periodic points are counted by A056045 has 1 fixed point and 8 points of period 7, hence 1 orbits of length 7.
		

Crossrefs

Programs

  • PARI
    a056045(n) = sumdiv(n, d, binomial(n, d));
    a(n) = (1/n)*sumdiv(n, d, moebius(d)*a056045(n/d)); \\ Michel Marcus, Sep 11 2017

Formula

a(n) = (1/n)* Sum_{ d divides n } mu(d)*A056045(n/d).

Extensions

More terms from Michel Marcus, Sep 11 2017

A110448 G.f.: A(x) = exp( Sum_{n>=1} A056045(n)/n*x^n ), where A056045(n) = Sum_{d|n} binomial(n,d).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 18, 23, 49, 73, 145, 194, 474, 611, 1331, 2027, 4393, 5919, 14736, 19415, 46487, 68504, 156618, 212055, 560380, 739165, 1833012, 2657837, 6513367, 8743208, 23649777, 31140300, 81276046, 114962333, 293600318, 391926154
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2005, Nov 10 2007

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 18*x^6 +...
where A(x) = exp( Sum_{n>=1} A056045(n)/n*x^n ), or
A(x) = exp(x + 3/2*x^2 + 4/3*x^3 + 11/4*x^4 + 6/5*x^5 +...).
The g.f. can also be expressed as the product:
A(x) = 1/(1-x)*G000108(x^2)*G001764(x^3)*G002293(x^4)*G002294(x^5)*...
where the functions are g.f.s of well-known sequences:
G000108(x) = 1 + x*G000108(x)^2 = g.f. of A000108 ;
G001764(x) = 1 + x*G001764(x)^3 = g.f. of A001764 ;
G002293(x) = 1 + x*G002293(x)^4 = g.f. of A002293 ;
G002294(x) = 1 + x*G002294(x)^5 = g.f. of A002294 ; etc.
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(x*Ser(vector(n,m, sumdiv(m,d,binomial(m,d))/m))+x*O(x^n)),n)}
    
  • PARI
    {a(n)=polcoeff(prod(m=1,n,1/x*serreverse(x/(1+x^m +x*O(x^n)))),n)}

Formula

G.f.: A(x) = Product_{n>=1} (1/x)*Series_Reversion( x/(1 + x^n) ); equivalently, G.f.: A(x) = Product_{n>=1} G(x^n,n) where G(x,n) = 1 + x*G(x,n)^n.
a(n) ~ c * 2^n / n^(3/2), where c = 2.8176325363130737043447... if n is even and c = 1.784372019603712867208... if n is odd. - Vaclav Kotesovec, Jan 15 2019

A056200 a(n) = 2^n - A056045(n).

Original entry on oeis.org

1, 1, 4, 5, 26, 22, 120, 149, 418, 716, 2036, 2378, 8178, 12846, 29294, 50709, 131054, 193972, 524268, 843260, 1979520, 3488618, 8388584, 13190042, 33501276, 56707912, 129527950, 227113934, 536870882, 887838482, 2147483616, 3683332117, 8396392382, 14846262368, 34352689180
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^n - DivisorSum[n, Binomial[n, #] &]; Array[a, 40] (* Amiram Eldar, Aug 18 2024 *)
  • PARI
    a(n) = 2^n - sumdiv(n, d, binomial(n, d)); \\ Michel Marcus, Aug 25 2019

Formula

a(p) = 2^p - p - 1 for a prime p.

Extensions

More terms from Amiram Eldar, Aug 18 2024

A308037 a(n) = Sum_{d|n} Stirling2(n,d).

Original entry on oeis.org

1, 2, 2, 9, 2, 123, 2, 1830, 3027, 43038, 2, 2023728, 2, 49337473, 213142023, 2313595723, 2, 216927216877, 2, 6712023695345, 82312699558575, 366282502967439, 2, 113350450913387211, 2436684974110753, 1850568574287104493, 106563274551407600878, 231678790379913209098, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, May 10 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add(Stirling2(n, d), d=numtheory[divisors](n)):
    seq(a(n), n=1..30);  # Alois P. Heinz, May 10 2019
  • Mathematica
    a[n_] := a[n] = Sum[StirlingS2[n, d], {d, Divisors[n]}]; Table[a[n], {n, 1, 29}]
  • PARI
    a(n) = sumdiv(n, d, stirling(n, d, 2)); \\ Michel Marcus, May 10 2019

Formula

a(n) = 2 <=> n is prime <=> n in { A000040 }. - Alois P. Heinz, May 10 2019

A271654 a(n) = Sum_{k|n} binomial(n-1,k-1).

Original entry on oeis.org

1, 2, 2, 5, 2, 17, 2, 44, 30, 137, 2, 695, 2, 1731, 1094, 6907, 2, 30653, 2, 97244, 38952, 352739, 2, 1632933, 10628, 5200327, 1562602, 20357264, 2, 87716708, 2, 303174298, 64512738, 1166803145, 1391282, 4978661179, 2, 17672631939, 2707475853, 69150651910, 2, 286754260229, 2, 1053966829029, 115133177854, 4116715363847, 2, 16892899722499, 12271514, 63207357886437
Offset: 1

Views

Author

Keywords

Comments

Also the number of compositions of n whose length divides n, i.e., compositions with integer mean, ranked by A096199. - Gus Wiseman, Sep 28 2022

Examples

			From _Gus Wiseman_, Sep 28 2022: (Start)
The a(1) = 1 through a(6) = 17 compositions with integer mean:
  (1)  (2)    (3)      (4)        (5)          (6)
       (1,1)  (1,1,1)  (1,3)      (1,1,1,1,1)  (1,5)
                       (2,2)                   (2,4)
                       (3,1)                   (3,3)
                       (1,1,1,1)               (4,2)
                                               (5,1)
                                               (1,1,4)
                                               (1,2,3)
                                               (1,3,2)
                                               (1,4,1)
                                               (2,1,3)
                                               (2,2,2)
                                               (2,3,1)
                                               (3,1,2)
                                               (3,2,1)
                                               (4,1,1)
                                               (1,1,1,1,1,1)
(End)
		

Crossrefs

Cf. A056045.
The version for nonempty subsets is A051293, geometric A326027.
The version for partitions is A067538, ranked by A316413, strict A102627.
These compositions are ranked by A096199.
The version for factorizations is A326622, geometric A326028.
A011782 counts compositions.
A067539 = partitions w integer geo mean, ranked by A326623, strict A326625.
A100346 counts compositions into divisors, partitions A018818.

Programs

  • Maple
    a:= n-> add(binomial(n-1, d-1), d=numtheory[divisors](n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Dec 03 2023
  • Mathematica
    Table[Length[Join @@ Permutations/@Select[IntegerPartitions[n],IntegerQ[Mean[#]]&]],{n,15}] (* Gus Wiseman, Sep 28 2022 *)
  • PARI
    a(n)=sumdiv(n,k,binomial(n-1,k-1))

A056188 a(1) = 1; for n>1, sum of binomial(n,k) as k runs over RRS(n), the reduced residue system of n.

Original entry on oeis.org

1, 2, 6, 8, 30, 12, 126, 128, 342, 260, 2046, 1608, 8190, 4760, 15840, 32768, 131070, 80820, 524286, 493280, 1165542, 1391720, 8388606, 5769552, 26910650, 23153832, 89478486, 131849648, 536870910, 352845960, 2147483646, 2147483648
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Comments

a(n) is a multiple of n for all n.
For n > 1, a(n) is the number of binary words of length n such that the quantities of 0's and 1's are coprime. - Bartlomiej Pawlik, Sep 03 2023

Examples

			For n=10, RRS[10]={1,3,7,9}, the corresponding coefficients are {10,120,120,10}, so the sum a(10)=260.
		

Crossrefs

Programs

  • Maple
    A056188 := proc(n)
        a := 0 ;
        for k from 1 to n do
            if igcd(k,n) = 1 then
                a := a+binomial(n,k);
            end if ;
        end do:
        a ;
    end proc: # R. J. Mathar, Sep 02 2017
  • Mathematica
    f[n_] := Plus @@ Binomial[n, Select[ Range[n], GCD[n, # ] == 1 &]]; Table[ f[n], {n, 33}] (* Robert G. Wilson v, Nov 04 2004 *)
  • PARI
    a(n) = if (n==1, 1, sum(k=0, n, if (gcd(n,k) == 1, binomial(n,k)))); \\ Michel Marcus, Mar 22 2020

Formula

a(n) = Sum{binomial[n, k]; GCD[n, k]=1, 0<=k<=n}.
For n=prime, a(n)=2^n-2 because all k<=n except 0 and n are used.

A327238 Expansion of Sum_{k>=1} ((1 + k * x^k)^k - 1).

Original entry on oeis.org

1, 4, 9, 20, 25, 63, 49, 160, 108, 350, 121, 940, 169, 1225, 1475, 2304, 289, 7560, 361, 8025, 12446, 7139, 529, 58192, 3750, 13858, 61965, 102655, 841, 191181, 961, 318464, 220704, 40460, 354172, 1304370, 1369, 63175, 629863, 4012608, 1681, 1916733, 1849
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 14 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 43; CoefficientList[Series[Sum[((1 + k x^k)^k - 1), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (n/#)^# Binomial[n/#, #] &], {n, 1, 43}]
  • PARI
    a(n)={sumdiv(n, d, (n/d)^d * binomial(n/d,d))} \\ Andrew Howroyd, Sep 14 2019

Formula

a(n) = Sum_{d|n} (n/d)^d * binomial(n/d,d).
a(p) = p^2, where p is prime.

A051054 a(n) = Sum_{k=1..n} C(n, floor(n/k)).

Original entry on oeis.org

0, 1, 3, 7, 15, 26, 54, 85, 159, 292, 513, 804, 1844, 2965, 5169, 10679, 20107, 34120, 72498, 126028, 245966, 498852, 913872, 1644570, 3600916, 6530881, 12280999, 25149973, 48355605, 89310576, 187976827, 348475899, 677303827
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A051054 := proc(n) local k; add(binomial(n,floor(n/k)), k=1..n); end; [seq(A051054(n), n=0..40)];
  • Mathematica
    Table[Sum[Binomial[n, Floor[n/i]], {i, n}], {n, 0, 40}] (* Wesley Ivan Hurt, May 16 2016 *)
  • PARI
    a(n) = sum(k=1, n, binomial(n, n\k)); \\ Seiichi Manyama, Jan 06 2022

Formula

a(n) is asymptotic to 2^n/sqrt(n*Pi/2). - Benoit Cloitre, Jan 11 2003

A174462 a(n) = Sum_{d|n} binomial(n,d)^2.

Original entry on oeis.org

1, 5, 10, 53, 26, 662, 50, 5749, 7138, 65630, 122, 1151702, 170, 11787102, 9225260, 168963957, 290, 2709216086, 362, 34398664078, 13522807742, 497634360470, 530, 7871610432598, 2822797526, 108172480466302, 21966337136980
Offset: 1

Views

Author

Paul D. Hanna, Apr 04 2010

Keywords

Comments

Analog to the central binomial coefficients: A000984(n) = Sum_{k=0..n} C(n,k)^2.

Crossrefs

Programs

  • PARI
    {a(n)=sumdiv(n,d,binomial(n,d)^2)}

Formula

Logarithmic derivative of A174461.

A105862 a(n) = n * Sum_{d|n} binomial(n,d)/gcd(n,d).

Original entry on oeis.org

1, 5, 10, 29, 26, 122, 50, 317, 334, 830, 122, 4754, 170, 7698, 11510, 34237, 290, 159530, 362, 458054, 358592, 1413890, 530, 8236946, 266276, 20806102, 14087530, 85118762, 842, 404242022, 962, 1244530621, 580671266, 4667223134, 35896250
Offset: 1

Views

Author

Robert G. Wilson v, Apr 23 2005

Keywords

Examples

			L.g.f.: A(x) = x + 5/2*x^2 + 10/3*x^3 + 29/4*x^4 + 26/5*x^5 + 61/3*x^6 +...
L.g.f.: A(x) = LOG[1/(1-x) * G(x^2,2)^2 * G(x^3,3)^3 * G(x^4,4)^4 *...]
where the functions G(x,n) are g.f.s of well-known sequences:
G(x,2) = g.f. of A000108 = 1 + x*G(x,2)^2;
G(x,3) = g.f. of A001764 = 1 + x*G(x,3)^3;
G(x,4) = g.f. of A002293 = 1 + x*G(x,4)^4 ; etc.
Exponentiation of l.g.f. A(x) is expressed by a product that begins:
exp(A(x)) = [1 + x + x^2 + x^3 +...] * [1 + 2*x^2 + 5*x^4 + 14*x^6 +...] * [1 + 3*x^3 + 12*x^6 + 55*x^9 +...] * [1 + 4*x^4 + 22*x^8 + 140*x^12 +...] * ...
		

Crossrefs

Cf. A134774 (exp(A(x))); A056045 (variant); A000108 (Catalan), A001764, A002293.

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, n*Plus @@ (Binomial[n, d]/GCD[n, d])]; Table[ f[n], {n, 35}]
  • PARI
    a(n)=n*polcoeff(sum(m=1,n,m*log(1/x*serreverse(x/(1+x^m +x*O(x^n))))),n)
    
  • PARI
    a(n)=if(n<1,0,n*sumdiv(n,d,binomial(n,d)/gcd(n,d))) \\ Paul D. Hanna, Nov 11 2007

Formula

a(n) = n * Sum_{d|n} (binomial(n, d) / GCD(n, d)).
L.g.f.: A(x) = Sum_{n>=1} LOG[ G(x^n,n)^n ] where G(x,n) = 1 + x*G(x,n)^n, where exp(A(x)) = g.f. of A110448. - Paul D. Hanna, Nov 11 2007
Showing 1-10 of 27 results. Next