cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A273160 a(n) = Sum_{k=1..n} C(n, floor((n-k)/k)).

Original entry on oeis.org

0, 1, 3, 5, 10, 13, 30, 39, 84, 143, 290, 424, 1120, 1697, 3521, 6633, 14012, 22721, 53529, 88607, 189749, 356024, 730697, 1256272, 2889484, 5006918, 10399649, 19706342, 40954970, 72663140, 160499071, 286286349, 597385864, 1134282375, 2340807724, 4251969339
Offset: 0

Views

Author

Wesley Ivan Hurt, May 16 2016

Keywords

Crossrefs

Programs

  • Maple
    A273160:=n->add(binomial(n,floor((n-i)/i)), i=1..n): seq(A273160(n), n=0..50);
  • Mathematica
    Table[Sum[Binomial[n, Floor[(n - i)/i]], {i, n}], {n, 0, 40}]

Formula

a(n) ~ 2^(n + 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, May 28 2021

A273161 a(n) = Sum_{k=1..n} C(n-k, floor((n-k)/k)).

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 13, 19, 34, 61, 108, 174, 384, 641, 1166, 2337, 4458, 7828, 16421, 29346, 57231, 114126, 215915, 396491, 839324, 1549146, 2983185, 5978656, 11628952, 21812113, 45099914, 84842925, 166417181, 332267593, 647614074, 1234586894, 2538571022
Offset: 0

Views

Author

Wesley Ivan Hurt, May 16 2016

Keywords

Crossrefs

Programs

  • Maple
    A273161:=n->add(binomial(n-i,floor((n-i)/i)), i=1..n): seq(A273161(n), n=0..50);
  • Mathematica
    Table[Sum[Binomial[n - i, Floor[(n - i)/i]], {i, n}], {n, 0, 40}]

Formula

a(n) ~ 2^(n - 3/2) / sqrt(Pi*n). - Vaclav Kotesovec, May 28 2021

A345466 a(n) = Product_{k=1..n} binomial(n, floor(n/k)).

Original entry on oeis.org

1, 1, 2, 9, 96, 1250, 64800, 1764735, 224788480, 22499086176, 6123600000000, 408514437465750, 1308805762115174400, 133962125607455951520, 99335199198879310098432, 113040832521732593994140625, 425230288403106927476736000000, 72623663171934137824096600064000
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 20 2021

Keywords

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else (&*[Binomial(n,Floor(n/j)): j in [1..n]]): n in [0..30]]; // G. C. Greubel, Feb 05 2024
    
  • Mathematica
    Table[Product[Binomial[n, Floor[n/k]], {k, 1, n}], {n, 0, 20}]
    Table[Product[((n + 1)/k - 1)^Floor[n/k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 24 2021 *)
  • SageMath
    [product(binomial(n,(n//j)) for j in range(1,n+1)) for n in range(31)] # G. C. Greubel, Feb 05 2024

Formula

log(a(n)) ~ n * log(n)^2 / 2. - Vaclav Kotesovec, Jun 21 2021
a(n) = Product_{k=1..n} ((n+1)/k - 1)^floor(n/k). - Vaclav Kotesovec, Jun 24 2021

A066704 Triangle with a(n,k) = C(n,floor(n/k)) with n>=k>=1.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 6, 4, 4, 1, 10, 5, 5, 5, 1, 20, 15, 6, 6, 6, 1, 35, 21, 7, 7, 7, 7, 1, 70, 28, 28, 8, 8, 8, 8, 1, 126, 84, 36, 9, 9, 9, 9, 9, 1, 252, 120, 45, 45, 10, 10, 10, 10, 10, 1, 462, 165, 55, 55, 11, 11, 11, 11, 11, 11, 1, 924, 495, 220, 66, 66, 12, 12, 12, 12, 12, 12
Offset: 1

Views

Author

Henry Bottomley, Jan 14 2002

Keywords

Examples

			Rows start:
  1;
  1,  2;
  1,  3, 3;
  1,  6, 4, 4;
  1, 10, 5, 5, 5;
  ...
		

Crossrefs

Row sums are A051054.
Columns include (most of) A000012, A001405, A051033, A051036, A051052, A051053, A062947 etc.
n appears A008619 times in the n-th row.
Cf. A060539.
Showing 1-4 of 4 results.