cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A051054 a(n) = Sum_{k=1..n} C(n, floor(n/k)).

Original entry on oeis.org

0, 1, 3, 7, 15, 26, 54, 85, 159, 292, 513, 804, 1844, 2965, 5169, 10679, 20107, 34120, 72498, 126028, 245966, 498852, 913872, 1644570, 3600916, 6530881, 12280999, 25149973, 48355605, 89310576, 187976827, 348475899, 677303827
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A051054 := proc(n) local k; add(binomial(n,floor(n/k)), k=1..n); end; [seq(A051054(n), n=0..40)];
  • Mathematica
    Table[Sum[Binomial[n, Floor[n/i]], {i, n}], {n, 0, 40}] (* Wesley Ivan Hurt, May 16 2016 *)
  • PARI
    a(n) = sum(k=1, n, binomial(n, n\k)); \\ Seiichi Manyama, Jan 06 2022

Formula

a(n) is asymptotic to 2^n/sqrt(n*Pi/2). - Benoit Cloitre, Jan 11 2003

A273161 a(n) = Sum_{k=1..n} C(n-k, floor((n-k)/k)).

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 13, 19, 34, 61, 108, 174, 384, 641, 1166, 2337, 4458, 7828, 16421, 29346, 57231, 114126, 215915, 396491, 839324, 1549146, 2983185, 5978656, 11628952, 21812113, 45099914, 84842925, 166417181, 332267593, 647614074, 1234586894, 2538571022
Offset: 0

Views

Author

Wesley Ivan Hurt, May 16 2016

Keywords

Crossrefs

Programs

  • Maple
    A273161:=n->add(binomial(n-i,floor((n-i)/i)), i=1..n): seq(A273161(n), n=0..50);
  • Mathematica
    Table[Sum[Binomial[n - i, Floor[(n - i)/i]], {i, n}], {n, 0, 40}]

Formula

a(n) ~ 2^(n - 3/2) / sqrt(Pi*n). - Vaclav Kotesovec, May 28 2021
Showing 1-2 of 2 results.