cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A317300 Sequence obtained by taking the general formula for generalized k-gonal numbers: m*((k - 2)*m - k + 4)/2, where m = 0, +1, -1, +2, -2, +3, -3, ... and k >= 5. Here k = 0.

Original entry on oeis.org

0, 1, -3, 0, -8, -3, -15, -8, -24, -15, -35, -24, -48, -35, -63, -48, -80, -63, -99, -80, -120, -99, -143, -120, -168, -143, -195, -168, -224, -195, -255, -224, -288, -255, -323, -288, -360, -323, -399, -360, -440, -399, -483, -440, -528, -483, -575, -528, -624, -575, -675, -624, -728, -675, -783
Offset: 0

Views

Author

Omar E. Pol, Jul 29 2018

Keywords

Comments

Taking the same formula with k = 1 we have A317301.
Taking the same formula with k = 2 we have A001057 (canonical enumeration of integers).
Taking the same formula with k = 3 we have 0 together with A008795 (Molien series for 3-dimensional representation of dihedral group D_6 of order 6).
Taking the same formula with k = 4 we have A008794 (squares repeated) except the initial zero.
Taking the same formula with k >= 5 we have the generalized k-gonal numbers (see Crossrefs section).

Crossrefs

Row 0 of A303301.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • PARI
    concat(0, Vec(x*(1 - 4*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^50))) \\ Colin Barker, Aug 01 2018

Formula

a(n) = -A174474(n+1).
From Colin Barker, Aug 01 2018: (Start)
G.f.: x*(1 - 4*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = -n*(n + 4) / 4 for n even.
a(n) = -(n - 3)*(n + 1) / 4 for n odd.
(End)

A267942 Interleave (n-1)^2 + 2 and (n+1)^2 + 2.

Original entry on oeis.org

3, 3, 2, 6, 3, 11, 6, 18, 11, 27, 18, 38, 27, 51, 38, 66, 51, 83, 66, 102, 83, 123, 102, 146, 123, 171, 146, 198, 171, 227, 198, 258, 227, 291, 258, 326, 291, 363, 326, 402, 363, 443, 402, 486, 443, 531, 486, 578, 531, 627, 578, 678, 627, 731, 678, 786, 731
Offset: 0

Views

Author

Paul Curtz, Jan 22 2016

Keywords

Comments

Trisections:
3, 6, 6, 27, 27, 66, 66, ... = 3*(1, 2, 2, 9, 9, 22, 22, ... ). See A056105.
3, 3, 18, 18, 51, 51, 102, ... = 3*(1, 1, 6, 6, 17, 17, ... ). See A056109.
2, 11, 11, 38, 38, 83, 83, ... (== 2 (mod 9)).
The trisections also have the signature (1,2,-2,-1,1). The corresponding main sequence is 0, 0, 0, 0, 1, 1, 3, 3, ... = A161680(n) with each term duplicated.

Examples

			a(0) = (2+13)/5, a(1) = (13+2)/5, a(2) = (5+5)/5, a(3) = (29+1)/5, ... (using first formula).
		

Crossrefs

Programs

  • Magma
    &cat [[(n-1)^2+2, (n+1)^2+2]: n in [0..50]]; // Vincenzo Librandi, Jan 23 2016
  • Mathematica
    Flatten[Table[{n^2 - 2 n + 3, n^2 + 2 n + 3}, {n, 0, 30}]] (* Vincenzo Librandi, Jan 23 2016 *)
    CoefficientList[Series[(3 - 7 x^2 + 4 x^3 + 2 x^4)/((1 - x)^3 (1 + x)^2), {x, 0, 56}], x] (* Michael De Vlieger, Jan 24 2016 *)
  • PARI
    Vec((3-7*x^2+4*x^3+2*x^4)/((1-x)^3*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 22 2016
    

Formula

a(n) = (A261327(n+2) + A261327(n-3))/5.
a(n+1) = a(n) + (-1)^n * A022998(n), a(0)=3.
a(n+3) = a(n) + 3*A193356(n), a(0)=a(1)=3, a(2)=2.
a(n) = 3 + A174474(n).
a(2n) + a(2n+1) = A255844(n).
From Colin Barker, Jan 22 2016: (Start)
a(n) = (2*n^2 - 6*(-1)^n*n - 2*n + 3*(-1)^n + 21)/8.
a(n) = (n^2 - 4*n + 12)/4 for n even.
a(n) = (n^2 + 2*n + 9)/4 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4.
G.f.: (3 - 7*x^2 + 4*x^3 + 2*x^4) / ((1-x)^3*(1+x)^2).
(End)

Extensions

More terms from Colin Barker, Jan 22 2016
Showing 1-2 of 2 results.