A174480 Rectangular array of coefficients in successive iterations of x*exp(x), as read by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 15, 23, 1, 1, 5, 28, 102, 104, 1, 1, 6, 45, 274, 861, 537, 1, 1, 7, 66, 575, 3400, 8598, 3100, 1, 1, 8, 91, 1041, 9425, 50734, 98547, 19693, 1, 1, 9, 120, 1708, 21216, 187455, 880312, 1270160, 136064, 1, 1, 10, 153, 2612, 41629
Offset: 1
Examples
Form an array of coefficients in the iterations of x*exp(x), which begin: n=1: [1, 1, 1/2!, 1/3!, 1/4!, 1/5!, 1/6!, ...]; n=2: [1, 2, 6/2!, 23/3!, 104/4!, 537/5!, 3100/6!, ...]; n=3: [1, 3, 15/2!, 102/3!, 861/4!, 8598/5!, 98547/6!, ...]; n=4: [1, 4, 28/2!, 274/3!, 3400/4!, 50734/5!, 880312/6!, ...]; n=5: [1, 5, 45/2!, 575/3!, 9425/4!, 187455/5!, 4367245/6!, ...]; n=6: [1, 6, 66/2!, 1041/3!, 21216/4!, 527631/5!, 15441636/6!, ...]; n=7: [1, 7, 91/2!, 1708/3!, 41629/4!, 1242892/5!, 43806175/6!, ...]; n=8: [1, 8, 120/2!, 2612/3!, 74096/4!, 2582028/5!, 106459312/6!, ...]; n=9: [1, 9, 153/2!, 3789/3!, 122625/4!, 4885389/5!, 230689017/6!, ...]; n=10:[1, 10, 190/2!, 5275/3!, 191800/4!, 8599285/5!, 457584940/6!,...]; ... This array begins with the above unreduced numerators for n >= 1, k >= 1.
Crossrefs
Programs
-
PARI
{T(n, k)=local(F=x, xEx=x*exp(x+x*O(x^(k+1)))); for(i=1,n,F=subst(F, x, xEx));(k-1)!*polcoeff(F, k)}
Formula
T(n,k) = [x^k/(k-1)! ] G_{n}(x) where G_{n}(x) = G_{n-1}(x*exp(x)) with G_0(x)=x, for n>=1, k>=1.
Comments