cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A174480 Rectangular array of coefficients in successive iterations of x*exp(x), as read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 15, 23, 1, 1, 5, 28, 102, 104, 1, 1, 6, 45, 274, 861, 537, 1, 1, 7, 66, 575, 3400, 8598, 3100, 1, 1, 8, 91, 1041, 9425, 50734, 98547, 19693, 1, 1, 9, 120, 1708, 21216, 187455, 880312, 1270160, 136064, 1, 1, 10, 153, 2612, 41629
Offset: 1

Views

Author

Paul D. Hanna, Apr 17 2010

Keywords

Comments

Triangle A174485 forms a matrix that transforms a diagonal into an adjacent diagonal in this array.

Examples

			Form an array of coefficients in the iterations of x*exp(x), which begin:
n=1: [1, 1, 1/2!, 1/3!, 1/4!, 1/5!, 1/6!, ...];
n=2: [1, 2, 6/2!, 23/3!, 104/4!, 537/5!, 3100/6!, ...];
n=3: [1, 3, 15/2!, 102/3!, 861/4!, 8598/5!, 98547/6!, ...];
n=4: [1, 4, 28/2!, 274/3!, 3400/4!, 50734/5!, 880312/6!, ...];
n=5: [1, 5, 45/2!, 575/3!, 9425/4!, 187455/5!, 4367245/6!, ...];
n=6: [1, 6, 66/2!, 1041/3!, 21216/4!, 527631/5!, 15441636/6!, ...];
n=7: [1, 7, 91/2!, 1708/3!, 41629/4!, 1242892/5!, 43806175/6!, ...];
n=8: [1, 8, 120/2!, 2612/3!, 74096/4!, 2582028/5!, 106459312/6!, ...];
n=9: [1, 9, 153/2!, 3789/3!, 122625/4!, 4885389/5!, 230689017/6!, ...];
n=10:[1, 10, 190/2!, 5275/3!, 191800/4!, 8599285/5!, 457584940/6!,...];
...
This array begins with the above unreduced numerators for n >= 1, k >= 1.
		

Crossrefs

Cf. A174485, diagonals: A174481, A174482, A174483, A174484.

Programs

  • PARI
    {T(n, k)=local(F=x, xEx=x*exp(x+x*O(x^(k+1)))); for(i=1,n,F=subst(F, x, xEx));(k-1)!*polcoeff(F, k)}

Formula

T(n,k) = [x^k/(k-1)! ] G_{n}(x) where G_{n}(x) = G_{n-1}(x*exp(x)) with G_0(x)=x, for n>=1, k>=1.

A174482 a(n) = coefficient of x^n/(n-1)! in the n-th iteration of x*exp(x) for n>=1.

Original entry on oeis.org

1, 2, 15, 274, 9425, 527631, 43806175, 5060694920, 776717906529, 152926864265845, 37581193509020711, 11276280009364700628, 4057223684795928824281, 1724304353051995724792979
Offset: 1

Views

Author

Paul D. Hanna, Apr 09 2010

Keywords

Examples

			The initial n-th iterations of x*exp(x) begin:
n=1: (1)*x + x^2 + x^3/2! + x^4/3! + x^5/4! + x^6/5! +...
n=2: x +(2)*x^2 + 6*x^3/2! + 23*x^4/3! + 104*x^5/4! + 537*x^6/5! +...
n=3: x + 3*x^2 +(15)*x^3/2! +102*x^4/3! +861*x^5/4! +8598*x^6/5! +...
n=4: x + 4*x^2 +28*x^3/2! +(274)*x^4/3! +3400*x^5/4! +50734*x^6/5! +...
n=5: x + 5*x^2 +45*x^3/2! +575*x^4/3! +(9425)*x^5/4! +187455*x^6/5! +...
n=6: x + 6*x^2 +66*x^3/2! +1041*x^4/3! +21216*x^5/4!+(527631)*x^6/5!+...
This sequence starts with the above coefficients in parathesis.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(E=x*exp(x+x*O(x^n)), F=x); for(i=1, n, F=subst(F, x, E)); (n-1)!*polcoeff(F, n)}

A174481 a(n) = coefficient of x^n/(n-1)! in the (n-1)-th iteration of x*exp(x) for n>=1.

Original entry on oeis.org

1, 1, 6, 102, 3400, 187455, 15441636, 1776667928, 272145104736, 53540399628405, 13156413372354340, 3949011172491569316, 1421739781364268435576, 604701975767931070422939, 299969585267917154906689660
Offset: 1

Views

Author

Paul D. Hanna, Apr 09 2010

Keywords

Examples

			The initial n-th iterations of x*exp(x) begin:
n=0: (1)*x;
n=1: x + (1)*x^2 + x^3/2! + x^4/3! + x^5/4! + x^6/5! +...
n=2: x + 2*x^2 +(6)*x^3/2! + 23*x^4/3! + 104*x^5/4! + 537*x^6/5! +...
n=3: x + 3*x^2 +15*x^3/2! +(102)*x^4/3! +861*x^5/4! +8598*x^6/5! +...
n=4: x + 4*x^2 +28*x^3/2! +274*x^4/3! +(3400)*x^5/4! +50734*x^6/5! +...
n=5: x + 5*x^2 +45*x^3/2! +575*x^4/3! +9425*x^5/4! +(187455)*x^6/5!+...
n=6: x + 6*x^2 +66*x^3/2! +1041*x^4/3! +21216*x^5/4!+527631*x^6/5! + (15441636)*x^7/6! +...
This sequence starts with the above coefficients in parathesis.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(E=x*exp(x+x*O(x^n)), F=x); for(i=1, n-1, F=subst(F, x, E)); (n-1)!*polcoeff(F, n)}

A174483 a(n) = coefficient of x^n/(n-1)! in the (n+1)-th iteration of x*exp(x) for n>=1.

Original entry on oeis.org

1, 3, 28, 575, 21216, 1242892, 106459312, 12577403841, 1962856001440, 391431498879806, 97160350830990624, 29387077319612739025, 10642369538735639329912, 4547196797035053394680280
Offset: 1

Views

Author

Paul D. Hanna, Apr 09 2010

Keywords

Examples

			The initial n-th iterations of x*exp(x) begin:
n=1: x + x^2 + x^3/2! + x^4/3! + x^5/4! + x^6/5! +...
n=2: (1)*x +2*x^2 + 6*x^3/2! + 23*x^4/3! + 104*x^5/4! + 537*x^6/5! +...
n=3: x +(3)*x^2 +15*x^3/2! +102*x^4/3! +861*x^5/4! +8598*x^6/5! +...
n=4: x + 4*x^2 +(28)*x^3/2! +274*x^4/3! +3400*x^5/4! +50734*x^6/5! +...
n=5: x + 5*x^2 +45*x^3/2! +(575)*x^4/3! +9425*x^5/4! +187455*x^6/5! +...
n=6: x + 6*x^2 +66*x^3/2! +1041*x^4/3! +(21216)*x^5/4!+527631*x^6/5!+...
n=7: x + 7*x^2 +91*x^3/2! +1708*x^4/3! +41629*x^5/4! +(1242892)*x^6/5! +...
This sequence starts with the above coefficients in parenthesis.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(E=x*exp(x+x*O(x^n)), F=x); for(i=1, n+1, F=subst(F, x, E)); (n-1)!*polcoeff(F, n)}

A174485 Triangle of numerators T(n,k) in the matrix {T(n,k)/(n-k)!,n>=k>=0} that transforms diagonals of the array (A174480) of coefficients in successive iterations of x*exp(x).

Original entry on oeis.org

1, 1, 1, 5, 2, 1, 70, 16, 3, 1, 1973, 308, 33, 4, 1, 94216, 11048, 810, 56, 5, 1, 6851197, 639972, 35325, 1672, 85, 6, 1, 706335064, 54671188, 2408568, 85904, 2990, 120, 7, 1, 98105431657, 6471586298, 236624733, 6741544, 176885, 4860, 161, 8, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 18 2010

Keywords

Examples

			Triangle T begins:
1;
1,1;
5,2,1;
70,16,3,1;
1973,308,33,4,1;
94216,11048,810,56,5,1;
6851197,639972,35325,1672,85,6,1;
706335064,54671188,2408568,85904,2990,120,7,1;
98105431657,6471586298,236624733,6741544,176885,4860,161,8,1;
17669939141440,1014487323984,31654735416,749040472,15706200,325368,7378,208,9,1;
...
Form a table of coefficients in iterations of x*exp(x), like so:
n=0: [1, 0, 0, 0, 0, 0, 0, ...];
n=1: [1, 1, 1/2!, 1/3!, 1/4!, 1/5!, 1/6!, ...];
n=2: [1, 2, 6/2!, 23/3!, 104/4!, 537/5!, 3100/6!, ...];
n=3: [1, 3, 15/2!, 102/3!, 861/4!, 8598/5!, 98547/6!, ...];
n=4: [1, 4, 28/2!, 274/3!, 3400/4!, 50734/5!, 880312/6!, ...];
n=5: [1, 5, 45/2!, 575/3!, 9425/4!, 187455/5!, 4367245/6!, ...];
n=6: [1, 6, 66/2!, 1041/3!, 21216/4!, 527631/5!+ 15441636/6!, ...];
n=7: [1, 7, 91/2!, 1708/3!, 41629/4!, 1242892/5!, 43806175/6!, ...];
n=8: [1, 8, 120/2!, 2612/3!, 74096/4!, 2582028/5!, 106459312/6!, ...];
...
and form matrix D from this triangle T by: D(n,k) = T(n,k)/(n-k)!,
then matrix D transforms diagonals in the above table as illustrated by:
D * A174481 = A174482, D * A174482 = A174483, D * A174483 = A174484,
where the diagonals begin:
A174481: [1, 1, 6/2!, 102/3!, 3400/4!, 187455/5!, ...];
A174482: [1, 2, 15/2!, 274/3!, 9425/4!, 527631/5!, ...];
A174483: [1, 3, 28/2!, 575/3!, 21216/4!, 1242892/5!, ...];
A174484: [1, 4, 45/2!, 1041/3!, 41629/4!, 2582028/5!, ...].
		

Crossrefs

Programs

  • PARI
    {T(n, k)=local(F=x, xEx=x*exp(x+x*O(x^(n+2))), M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, xEx)); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); (n-k)!*(P~*N~^-1)[n+1, k+1]}
Showing 1-5 of 5 results.